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Abstract—In this contribution a novel stochastic modeling
strategy to analyze the influence of parameter variability on
differential signaling over on-chip interconnects is presented. The
method starts from an accurate computation of the differential
line’s per unit of length transmission line parameters, adopts a
parameterized macromodeling scheme, and invokes the so-called
stochastic Galerkin method (SGM). Parameter variability of the
line itself and of the terminations are studied and compared to a
traditional Monte Carlo (MC) approach, as such demonstrating
excellent accuracy and efficiency of the proposed new technique.
For the first time, an SGM is constructed for and applied to
differential on-chip interconnects, and it is illustrated that this
novel stochastic modeling strategy is very well suited to analyze
common-mode noise induced by random imbalance of the line’s
terminations.

I. INTRODUCTION

It is nowadays a well-known fact that the electromagnetic
compatibility (EMC) and signal integrity (SI) behavior of
state-of-the-art interconnect structures is largely influenced by
their manufacturing process. Due to production tolerances,
geometrical and material parameter uncertainty appears and
randomness is introduced. This is especially the case for
on-chip interconnects, where increasing miniaturization only
adds to the problem. Positions and widths of the traces are
no longer deterministically known and also the shape of the
cross-section can be influenced, e.g. by etching or electrolytic
growth, leading to random trapezoidal cross-sections of the
metallic interconnects, instead of rectangular ones [1]. On
top of that, designers have to deal with very stringent design
specifications, making it imperative to rely on efficient and
accurate modeling tools, which accurately predict all high-
frequency phenomena and effects induced by the substrate and
conductor loss mechanisms (skin effect, slow-wave effect, etc).

In recent literature the stochastic Galerkin

method (SGM) [2] has been applied to uniform transmission
lines, in particular to cable harnesses [3] and interconnects
on printed circuit boards [4]. The technique relies on simple
numerical schemes or on heuristic models for the per unit
of length (p.u.l.) parameters of the uniform multiconductor
transmission lines (MTL) under consideration. These p.u.l.
parameters were considered to be frequency independent.
Unfortunately, the SGM, as presented in [3] and [4], cannot
be immediately applied to on-chip interconnect structures,
especially not in the presence of semiconductors, because
the on-chip interconnects’ p.u.l. parameters are strongly
frequency dependent and also strongly influenced by material
and geometrical parameters. Hence, simple numerical schemes
or heuristic models do not suffice.

In [5], parameter variability of on-chip interconnects was
studied, using a simple but robust Monte Carlo (MC) approach.
It is well-known that the convergence of MC is problematic,
leading to very long simulations times. For the single on-chip
line in the presence of one stochastic parameter, as presented
in [5], however, the MC analysis was made tractable via a
macromodeling step. Unfortunately, the technique of [5] is
not readily extendable to MTLs in the presence of multiple
stochastic parameters.

In this contribution, a novel stochastic modeling strategy is
proposed for on-chip interconnects. A three-step approach is
adopted. First, the p.u.l. parameters of the MTL are accurately
computed, using a two-dimensional (2-D) electromagnetic
(EM) modeling tool [6], [7]. Second, the tabulated data evolv-
ing from the first step are used as input for a macromodeling
procedure, yielding parameterized multivariate macromodels
for the pertinent p.u.l. parameters. Thanks to the construction
of these macromodels, which are closed-form expressions, in a
third step, an accurate and efficient SGM can be implemented.
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Whereas in [8] the general framework is explained in great
detail, this contribution focusses on some important aspects
concerning EMC and SI. First, and in contrast to [8], the lines’
terminations are also considered as random variables (RVs).
Second, differential lines are studied, and more specifically,
the appearance of common-mode noise, induced by random
imbalance of the terminations, is analyzed. It is demonstrated
that the proposed stochastic modeling strategy leads to ac-
curate results in an elegant and efficient way, compared to
standard MC approaches.

II. MACROMODELING BASED STOCHASTIC GALERKIN

METHOD FOR ON-CHIP INTERCONNECTS

The goal is to solve the Telegrapher’s equations pertaining
to MTLs that are influenced by a set of stochastic parame-
ters, which can be geometrical or material parameters of the
interconnect structure itself, or parameters describing the non-
deterministic character of the terminations of the lines. In this
section, for clarity of explanation, a single line with a single
stochastic parameter is considered; more general expressions
can be found in [8]. In Section III, examples with up to
four parameters will be discussed. The pertinent Telegrapher’s
equations for this simplified case are

d

dz
V (z, s, β) = −Z(s, β) I(z, s, β), (1)

d

dz
I(z, s, β) = −Y (s, β)V (z, s, β), (2)

where V (z, s, β) and I(z, s, β) are the voltage and the current
along the line and these are functions of the distance z
along the line, the complex frequency s = j2πf and of
the stochastic parameter β. The p.u.l. impedance Z(s, β) and
admittance Y (s, β) are also function of s and β.

In a first step, these p.u.l. parameters need to be very
accurately computed. Thereto, a 2-D EM modeling tool [6], [7]
is used. This solver assumes a quasi-TM behavior of the fields,
which is a valid assumption for on-chip interconnects, given
their electrically small cross-sections. A careful definition of
the circuit current in the presence of the semiconductors leads
to a consistent formulation of the complex inductance and
complex capacitance problems, which are cast as boundary
integral equations (BIEs). This is made possible thanks to
the introduction of a discretized version of the Dirichlet-to-
Neumann boundary operator. Solving the two BIEs for a set
of samples (s, β) yields tabulated data for Z(s, β) and Y (s, β).
The data samples so obtained are very accurate: all high-
frequency phenomena are very precisely captured, as well
as all loss mechanisms. Because of the BIE-approach, the
technique is also rather efficient, as the skin-effect is accurately
modeled without needing a very fine volume discretization.

Second, multivariate parameterized macromodels [9] are
constructed starting from this tabulated data. For V fixed
values of the stochastic parameter βv, v = 1, . . . , V , univariate
macromodels Zumm(s, βv) and Y umm(s, βv) for the p.u.l.
parameters are obtained via a standard Vector Fitting (VF)
routine [10]–[12] in combination with adaptive frequency sam-
pling [13]. These univariate macromodels, which are rational

functions of frequency, are then strung together by means of
barycentric interpolation [14]:

Zmm(s, β) =

(

V
∑

v=1

wv

β − βv
Zumm(s, βv)

)

/

(

V
∑

v=1

wv

β − βv

)

,

(3)

Y mm(s, β) =

(

V
∑

v=1

wv

β − βv
Y umm(s, βv)

)

/

(

V
∑

v=1

wv

β − βv

)

,

(4)

where the numbers wv , v = 1, . . . , V , indicate the pertinent
barycentric weights.

Third, the SGM is invoked. To this end, a polynomial chaos
(PC) expansion of the unknown voltage and current along the
line and of the known p.u.l. parameters is put forward, as
follows:

V (z, s, β) =

K
∑

k=0

Vk(z, s)φk(β), (5)

I(z, s, β) =

K
∑

k=0

Ik(z, s)φk(β), (6)

Zmm(s, β) =

K
∑

k=0

Zk(s)φk(β), (7)

Y mm(s, β) =

K
∑

k=0

Yk(s)φk(β). (8)

In the above equations, the functions φk(β), k = 0, . . . ,K ,
are a set of K + 1 orthogonal polynomials pertaining to the
Wiener-Askey scheme [15], satisfying

<φk(β), φm(β)>=<φm(β), φm(β)> δkm, (9)

with δkm the Kronecker delta and where the Hilbert space of
the variable β is equipped with the inner product

<φk(β), φm(β)>=

∫ b

a

φk(β)φm(β)Wβ(β) dβ. (10)

In (10), the weighting function Wβ(β) denotes the probability
distribution of β. For example, in the case that β is uni-
formly distributed in the interval [a, b], the weighting function
Wβ(β) is a constant, and the polynomials φk(β) are Legendre
polynomials. For a normal distributed RV β, Wβ(β) is a
Gaussian weighting function, the interval [a, b] = ]−∞,∞[
extends over the complete real axis, and Hermite polynomials
have to be adopted. From this scheme, and using the closed-
form expressions (3) and (4), the expansion coefficients Zk(s)
and Yk(s), k = 0, . . . ,K , of the p.u.l. parameters can be
accurately and efficiently obtained, as follows:

Zk(s) =<Zmm(s, β), φk(β)> / <φk(β), φk(β)>, (11)

Yk(s) =<Y mm(s, β), φk(β)> / <φk(β), φk(β)> . (12)

To solve now for the 2(K + 1) unknown expansion coeffi-
cients Vk(z, s) and Ik(z, s), k = 0, . . . ,K , the expansions (5),
(6), (7) and (8) are substituted back into the Telegrapher’s
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equations (1) and (2), which are then subject to a Galerkin
weighting procedure, meaning that the equations are weighted
with the same set of test functions φm(β), m = 0, . . . ,K ,
using the inner product (10). This leads to a set of 2(K + 1)
coupled equations in the unknown expansion coefficients, as
follows:

∀m = 0, . . . ,K :

d

dz
Vm(z, s) = −

K
∑

k=0

K
∑

l=0

αklmZk(s)Il(z, s), (13)

d

dz
Im(z, s) = −

K
∑

k=0

K
∑

l=0

αklmYk(s)Vl(z, s), (14)

with

αklm =<φk(β)φl(β), φm(β)> / <φm(β), φm(β)> . (15)

Equations (13) and (14) correspond to a matrix ordinary
differential equation (ODE). Compared to the original equa-
tions (1) and (2), the dimensionality is increased, but the
dependency on the stochastic parameter(s) is removed. The
ODE can be solved upon the knowledge of 2(K+1) boundary
conditions (BCs). Therefore, consider a finite length L of
the line, which is now terminated by means of Thévenin
generators at both its ends. These Thévenin generators consist
of a voltage source EN (s, β) and an impedance ZN(s, β) at
the near end (z = 0) and of a voltage source EF (s, β) and
an impedance ZF (s, β) at the far end (z = L). Then, the two
port equations at the terminations of the lines are

VN (s, β) = EN (s, β)− ZN (s, β) IN (s, β), (16)

VF (s, β) = EF (s, β) + ZF (s, β) IF (s, β), (17)

where VN (s, β) ≡ V (z = 0, s, β), VF (s, β) ≡ V (z =
L, s, β), IN (s, β) ≡ I(z = 0, s, β) and IF (s, β) ≡ I(z =
L, s, β) denote the port voltages and currents. It is observed
that also the Thévenin generators can depend on one or more
stochastic parameters. The two equations (16) and (17) are
now also subject to the SGM procedure, leading to the proper
set of 2(K + 1) BCs:

∀m = 0, . . . ,K :

VN,m(s) = EN,m(s)−
K
∑

k=0

K
∑

l=0

αklmZN,k(s)IN,l(s), (18)

VF,m(s) = EF,m(s) +
K
∑

k=0

K
∑

l=0

αklmZF,k(s)IF,l(s). (19)

These BCs are used to solve (13) and (14). Once the coef-
ficients Vk(s) and Ik(s), k = 0, . . . ,K , are known, they are
substituted back into (5) and (6), yielding the final current
and voltage along the line as a function of frequency, and
as a function of the stochastic parameter(s) β. For this latter,
only a pertinent probability distribution was considered. The
stochastic moments or probability distribution of the voltage
and current can now be calculated using standard analytical
or numerical techniques [16].

III. VARIABILITY ANALYSIS OF ON-CHIP DIFFERENTIAL

LINES

A. Geometry

As an example, we consider a pair of coupled inverted
embedded microstrip (IEM) lines, of which the cross-section
is shown in Fig. 1. This structure comprises a semiconductor
substrate, i.e. 30 µm Silicon with a relative permittivity of
11.7 and a conductivity of 10 S/m, and a 11.4 µm thick SiO2

insulator with a relative permittivity of 3.9 and a loss tangent
of 0.001. The ground plane is placed on top of the layered
structure and it is made out of 3 µm thick Aluminum with
a conductivity of 3.77 · 107 S/m. The signal conductors are
found at a height of 6.4 µm above the semiconductor-insulator
interface. They are made out of 2 µm thick Aluminum.
Whereas the top sides of these lines are fixed to 2 µm, the
base β of their cross-sections is considered to be random.
The random trapezoidal shape, so obtained, is induced by
the manufacturing process (etching or electrolytic growth). In
the remainder of this contribution it is assumed that β is a
Gaussian RV with a mean value µβ = 2 µm and a normalized
standard deviation σβ = 10%. A second stochastic parameter
is introduced, i.e. the gap ζ between the lines. The RV ζ is
also normally distributed, with mean value µζ = 3 µm and a
normalized standard deviation σζ = 8%. Obviously, the accu-
racy of these process-dependent input parameters determines
the accuracy of the final result. With this differential pair of
IEM lines the source-line-load configuration of Fig. 2 is now
constructed. The lines are given a length of L = 1 mm. At
the near ends, low-impedance voltage sources, with an internal
impedance of 1 Ω, are connected. To obtain differential
steering, the voltage source on the first line has an amplitude
of half a volt (E(1)

N = 500 mV), whereas the other produces
minus half a volt (E(2)

N = −500 mV). At the far ends, the lines
are terminated by a capacitive load Z

(i)
L = 1/(sCi), i = 1, 2.

100 µm

2 µm 2 µm

β β

ζ

30 µm

6.4 µm

2 µm

3 µm

3 µm

Aluminum : σ = 3.77 · 107 S/m

SiO2 : ǫr = 3.9, tan δ = 0.001

Silicon : ǫr = 11.7, σ = 10 S/m

Fig. 1: Cross-section AA’ (see Fig. 2) of the differential IEM
lines (not on scale).

We will conduct two numerical experiments and observe
the voltages at the loads. More specifically, we are interested
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Fig. 2: Source-line-load configuration. The cross-section AA’
is depicted in Fig. 1.

in the differential signal voltage Vd and the common signal
voltage Vc, which are defined as [17]:

Vd = V
(1)
F − V

(2)
F , (20)

Vc =
V

(1)
F + V

(2)
F

2
. (21)

B. Balanced lines

In a first experiment we consider the capacitive loads to be
deterministic and equal, i.e. C1 = C2 = 1 pF. A variability
analysis is performed, using the novel modeling strategy out-
lined in Section II and an MC run with 50000 (β, ζ)-samples.
A Bode plot of the magnitude of the differential voltage (20)
is shown in Fig. 3(a) for a frequency range up to 100 GHz
and a magnification of the resonance around 8 GHz is shown
in Fig. 3(b). Thanks to the symmetric configuration with
balanced loads and the differential excitation, the common-
mode voltage (21) is of course zero, and hence, not displayed.
In Fig. 3, the full black lines indicate the mean µ|Vd|, and
the dashed lines show the ±3σ|Vd| deviations from this mean,
all computed using the novel approach. The gray lines on
the figures correspond to 100 samples of the MC run; the
circles (◦) and squares (�) indicate the mean and the ±3σ-
deviations, resp., computed using the 50000 samples of the
MC run. (For clarity, the circles and squares are not shown
on Fig. 3(a).) From Fig. 3 an excellent agreement between the
MC analysis and the novel technique is observed. Comparison
of CPU times between the two techniques indicates that the
novel SGM is more than 200 times faster than the MC run.
Apart from stochastic moments, complete stochastic functions
can be computed as well. In Fig. 4 the probability density
function (PDF) and the cumulative distribution function (CDF)
of the differential voltage’s magnitude at 8 GHz are presented.
Excellent agreement is again observed.

C. Common-mode noise induced by random loads

In this second experiment, the capacitive loads are now also
considered to be prone to manufacturing tolerances, and hence,
in addition to the trapezoids’ base length β and the gap ζ, the
capacitors are modeled as stochastic parameters. Specifically,
we consider C1 and C2 to be mutually independent RVs that
are both uniformly distributed within the interval [0.9, 1.1] pF.
Of course, an imbalance can occur now, so we analyze both
the differential voltage and the common-mode voltage. In
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Fig. 3: Bode plot of the magnitude of the differential volt-
age Vd for the balanced differential IEM lines. Full black
line: mean µ|Vd| computed using the novel technique; Dashed
black line: ±3σ|Vd|-variations computed using the novel tech-
nique; Gray lines: 100 samples from the MC run; Circles
(◦): mean µ|Vd| computed using MC technique; Squares (�):

±3σ|Vd|-variations computed using MC technique.
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Fig. 4: PDF and CDF of the magnitude of the differential
voltage Vd at 8 GHz for the balanced differential IEM lines.
Full black line: PDF computed using the novel technique;
Dashed black line: CDF computed using the novel technique;
Circles (◦): PDF computed using MC technique; Squares (�):

CDF computed using MC technique.
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Fig. 5: Bode plot of the magnitude of the differential volt-
age Vd for the unbalanced differential IEM lines. Full black
line: mean µ|Vd| computed using the novel technique; Dashed
black line: ±3σ|Vd|-variations computed using the novel tech-
nique; Gray lines: 100 samples from the MC run; Circles
(◦): mean µ|Vd| computed using MC technique; Squares (�):

±3σ|Vd|-variations computed using MC technique.

Figs. 5(a) and 6(a) the magnitude of both quantities are shown,
using the novel SGM approach and an MC run with 50000
(β, ζ, C1, C2)-samples, for a frequency range up to 100 GHz.
In Figs. 5(b) and 6(b) a magnification of the differential
voltage’s resonance around 8 GHz is shown. As before, the full
black lines indicate the mean values µ|Vd| and µ|Vc|, and the
dashed lines show the ±3σ|Vd| and +3σ|Vc| deviations from
these mean values, all computed using the novel approach.
The gray lines on the figures correspond to 100 samples
of the MC run; the circles (◦) and squares (�) indicate the
mean values and the 3σ-deviations, resp., computed using the
50000 samples of the MC run. For this unbalanced setup,
3σ|Vc| > µ|Vc|. Hence, the −3σ|Vc|-deviations are no longer
shown. From Figs. 5 and 6, an excellent agreement between
the MC analysis and the novel technique is observed. It is also
noticed that an important common-mode noise contribution
can occur, especially around 7 GHz where a peak appears. In
Figs. 7 and 8, the PDF and the CDF of the (desired) differential
voltage and the common-mode voltage (noise) at 8 GHz are
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Fig. 6: Bode plot of the magnitude of the common-mode
voltage Vc for the unbalanced differential IEM lines. Full black
line: mean µ|Vc| computed using the novel technique; Dashed
black line: +3σ|Vc|-variation computed using the novel tech-
nique; Gray lines: 100 samples from the MC run; Circles (◦):
µ|Vc| computed using MC technique; Squares (�): +3σ|Vc|-

variation computed using MC technique.
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Fig. 7: PDF and CDF of the magnitude of the differential
voltage Vd at 8 GHz for the unbalanced differential IEM lines.
Full black line: PDF computed using the novel technique;
Dashed black line: CDF computed using the novel technique;
Circles (◦): PDF computed using MC technique; Squares (�):

CDF computed using MC technique.
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Fig. 8: PDF and CDF of the magnitude of the common-mode
voltage Vc at 8 GHz for the unbalanced differential IEM lines.
Full black line: PDF computed using the novel technique;
Dashed black line: CDF computed using the novel technique;
Circles (◦): PDF computed using MC technique; Squares (�):

CDF computed using MC technique.

shown, as such allowing a comparison with the balanced case
of Fig. 4. In contrast to the differential voltage, which is not
much affected, the PDF of the common-mode voltage is very
skew. This can be explained as follows: given the two uniform
distributions of the loads, in many instances the lines will be
rather balanced, yielding a high probability of a low common-
mode noise voltage. However, a significant noise contribution
of more than 200 mV is also possible. Because of the skewness
of the PDF, a thorough validation of the technique is obtained.
Typically, such skew PDFs can no longer be described by only
low order stochastic moments, and are harder to model. It is
interesting to mention that the above figures provide valuable
information for interconnect designers, allowing to rapidly
assess the signal integrity behavior of the interconnect. For
example, Figs. 7 and 8 lead to the conclusion that, at the
loads, a maximum common-mode noise contribution of about
10% w.r.t. the desired differential signal can be expected.

In all of the above examples, the material parameters were
considered to be constant. Of course, frequency-dependent ma-
terial parameters are easily included, as the proposed technique
is a frequency-domain method. For completeness, we also
mention that, given this frequency-domain approach, nonlinear
terminations cannot be included in a straightforward way.

IV. CONCLUSION

In this contribution a novel SGM was presented to ana-
lyze parameter variability of on-chip differential lines. The
influence of multiple stochastic parameters was studied, such
as shape of the cross-section, gap between the lines, and
loads of the lines. The randomness of these parameters is
induced by the manufacturing process. The new SGM for
these on-chip lines was made possible thanks to very accurate
2-D EM modeling and parameterized macromodeling of the
pertinent p.u.l. transmission line parameters. Upon comparison
with a standard MC technique, the accuracy and efficiency
of the novel modeling strategy was validated. Illustrative

examples show that the technique allows analyzing signal
integrity aspects of on-chip differential lines, and in particular,
it allows to rapidly assess the maximum common-mode noise
contribution that can be expected at the terminations.
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