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Passivity-Preserving Interpolation-Based
Parameterized Macromodeling of Scattered S-Data
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Abstract—A new technique to build parametric macromodels
based on scattered S-data samples in the design space is presented.
Stability and passivity are guaranteed by construction over the en-
tire design space by a robust and efficient two-step algorithm. In
the first step, a set of univariate stable and passive macromodels is
built. In the second step, a geometrical structure that determines
the connections between the scattered data points in the design
space is built to perform multivariate positive interpolation.

Index Terms—Interpolation, parametric macromodeling, pas-
sivity, rational approximation, scattered data.

I. INTRODUCTION

R EAL-TIME design space exploration, design optimiza-
tion and sensitivity analysis require the development of

accurate parametric macromodels, describing the dynamic be-
havior of scalable systems that are characterized by time or fre-
quency and several design variables, such as geometrical layout
or substrate characteristics.

A rational parametric macromodeling method was proposed
in [1] as a multivariate extension of the Orthonormal Vector Fit-
ting (OVF) technique. It is able to accurately model highly dy-
namic parameterized frequency responses, but it does not guar-
antee stability and passivity. More recently, a technique to build
parametric macromodels for S-representations that are stable
and passive over the entire design space was presented in [2].
It exploits a tensor product multivariate interpolation scheme to
build multivariate macromodels. However, a limitation of this
method is the assumption of a fully filled, but not necessarily
equidistant, rectangular grid for the data samples, which does
not allow its application to scattered data grids.

This letter presents a novel technique that overcomes the
restriction on the structure of the data samples present in [2]
and can cope with scattered data. It is able to build accurate
multivariate rational macromodels for S-representations that
are stable and passive by construction over the entire design
space. The technique is validated by a numerical example.
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II. PARAMETRIC MACROMODELING

The goal of the proposed algorithm is to build a multivariate
representation which accurately models a large set of

scattered data samples and guar-
antees stability and passivity over the entire design space .
These data samples depend on the complex frequency ,
and several design variables , such as the layout
features of a circuit (e.g. lengths, widths, ) or the substrate
parameters (e.g. thickness, dielectric constant, losses, ). The
aim of this letter is to extend the technique presented in [2] to
deal with scattered distributed data samples.

A. Root Macromodels

Starting from a set of data samples
a frequency dependent rational model in a pole-residue form
is built for all grid points in the design space by means of the
Vector Fitting (VF) technique [3]. A pole-flipping scheme is
used to enforce strict stability [3] and passivity enforcement can
be accomplished using one of the robust standard techniques
[4]–[6]. The result of this initial step is a set of rational univariate
macromodels, stable and passive, called root macromodels. This
initial step allows the separation of frequency from the other
parameters, in other words frequency is treated as a special pa-
rameter. Every root macromodel is related to a certain point in
the design space. The construction of the root macromodels re-
sults in a family of univariate rational models related to a cer-
tain set of points in the design space. The authors consider the
design space as the parameter space without fre-
quency. contains all parameters . If the parameter
space is N-dimensional, the design space is (N-1)-dimensional.

B. N-D Macromodeling

Once a set of root macromodels is available, the next step
of the algorithm is focused on gluing together the root macro-
models by a multivariate interpolation scheme to obtain a para-
metric macromodel . This multivariate representation
models the set of data samples ,
while preserving stability and passivity over the entire de-
sign space. Before performing the interpolation process, the
design space is divided into cells using simplices [7]. In 2-D
this process is called triangulation, in higher dimensions one
speaks of a tessellation. A simplex, or N-simplex, is the N-D
analogue of a triangle in 2-D and a tetrahedron in 3-D. For each
data distribution many tessellations can be constructed. The
minimal requirement is that the simplices do not overlap, and
that there are no holes. Delaunay tessellation [8] is a well-know
tessellation technique stemming from computational geometry.
It is used in different fields such as mesh generation, surface
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reconstruction, molecular modeling and tessellation of solid
shapes. Delaunay tessellation in an N-dimensional space is a
space-filling aggregate of simplices and can be performed using
standard algorithms [9]. We indicate a simplex region of the
design space as , and the corresponding
vertices as , . A simplex in N dimensions
has vertices. Once the tessellation of the design space is
accomplished, a tessellation-based linear interpolation (TLI) is
used to build a parametric macromodel. TLI performs a linear
interpolation inside a simplex with arbitrary vertices using
barycentric coordinates [10] and it is therefore a local method.
If the N-dimensional volume of the simplex does not vanish,
i.e. it is non-degenerate, any point enclosed by a simplex can
be expressed uniquely as a linear combination of the
simplex vertices. A multivariate macromodel can be written as

(1)

where is the simplex the contains the point and the barycen-
tric coordinates satisfy the following properties:

(2)

(3)

(4)

We remark that the interpolation process is local, be-
cause the multivariate model in a certain point

only depends on the root macro-
models at the vertices of the simplex that contains the point

. The TLI interpolation method belongs to the general class
of positive interpolation schemes [11]. In the bivariate
case the interpolation scheme boils down to piecewise linear
interpolation [2]. Stability is automatically preserved in (1), as
it is a weighted sum of strictly stable rational macromodels.
The proof of the passivity preserving property of the proposed
technique over the entire design space is given in Section II-C.

C. Passivity Preserving Interpolation

A proof similar to [2] is provided for the passivity preserving
property of the new macromodeling technique. A linear network
described by S-matrix is passive if [12]:

1) for all , where “ ” is the complex conju-
gate operator.

2) is analytic in .
3) ; .

Concerning the root macromodels, conditions 1) and 2) are al-
ways satisfied since all complex poles/residues are always con-
sidered along with their conjugates and strict stability is im-
posed by pole-flipping. Condition 1) is preserved in the pro-
posed multivariate representation (1), as it is a weighted sum
with real nonnegative weights of systems respecting this first
condition. Condition 2) is preserved in (1), as it is a weighted
sum of strictly stable rational macromodels. Condition 3) is en-
forced, if needed, on the root macromodels by using a standard
passivity enforcement technique [4]–[6]. It is equivalent to the

Fig. 1. Geometry of the double folded stub microstrip bandstop filter.

condition ( norm) [13], i.e., the largest sin-
gular value of does not exceed one in the right-half plane.
Using this equivalent condition, we can write

(5)
Condition 3) is satisfied by construction in (1). We have demon-
strated that all three passivity conditions for S-representations
are preserved in the novel parametric macromodeling algorithm,
using the sufficient conditions (2)–(4) related to the interpola-
tion kernels.

III. NUMERICAL EXAMPLE

A. Double Folded Stub Microstrip Bandstop Filter

The present technique is used to model a double folded stub
microstrip bandstop filter [2] that is shown in Fig. 1. The sub-
strate is 0.1270 mm thick with a relative dielectric constant

and a loss tangent . The S-matrix is
modeled as function of the varying length of each folded seg-
ment and varying spacing between
a folded stub and the main line
over the frequency range [5–20] GHz. All data is simulated by
ADS-Momentum.1

403 root macromodels are built at 403 scattered points in the
design space by means of VF. These scattered points in the 2-D
design space composed of the variables are chosen by
a maxmin Latin hypercube design [14], enhanced by adding
some data points on the boundary of the design space. The re-
quired number of poles in VF is adaptively selected for each root
macromodel using a bottom-up approach, in such a way that the
corresponding maximum absolute model error for each entry of
the scattering matrix is smaller than 60 dB. The passivity of
each root macromodel is verified by checking the eigenvalues
of the Hamiltonian matrix [13] and it is enforced if needed.
Once a triangulation of the 2-D design space is performed, a
trivariate macromodel is obtained using the TLI technique. A
passivity test on a dense sweep over the design space has con-
firmed the theoretical claim of overall passivity. Once the para-
metric macromodel is built, it is validated over a reference grid
of samples . Fig. 2 shows all data
points in the design space selected to build and validate
the parametric macromodel. Fig. 3 shows the magnitude of the
parametric macromodels of and for
the length values . Fig. 4 shows the dis-
tribution of the absolute error over the dense reference grid in a
histogram. The maximum absolute error over the reference grid

1Momentum EEsof EDA, Agilent Technologies, Santa Rosa, CA.
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Fig. 2. Data points in the design space to build ��� and validate ��� the para-
metric macromodel.

Fig. 3. Magnitude of the trivariate models of � (light grey surface) and �
(dark grey surface) for � � ���� �� (top) and � � ���� �� (bottom).

is bounded by 60.5 dB. The parametric macromodels describe
the behavior of the system very accurately, while guaranteeing
overall stability and passivity.

IV. CONCLUSION

We have presented a new parametric macromodeling tech-
nique for scattered S-parameter data samples. A two-step algo-
rithm is used: first a family of stable and passive root macro-

Fig. 4. Histogram: error distributions of the trivariate models of � (light
grey) and � (dark grey) over 1080000 validation samples.

models is built for a set of data points in the design space and
then a tessellation-based linear interpolation scheme is used to
provide a parametric macromodel. A numerical example con-
firms the capability of the algorithm to provide accurate para-
metric macromodels of dynamic systems starting from scattered
data samples, while guaranteeing stability and passivity over the
complete design space.
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