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Abstract—Event detection plays an important role in non-
intrusive load monitoring to accurately detect when appliances
are switched on or off in a residential environment. Besides being
accurate, it is important that these methods are robust on real-life
power traces. This paper shows that some state-of-the-art event
detection methods may miss events when there is a substantial
base load caused by active power consuming devices. In order to
address this problem, this paper extends the existing chi-squared
goodness-of-fit test with a a voting scheme. Furthermore, a work
flow is proposed using surrogate-based optimisation for tuning
the parameters of these tests in an efficient way. Results on the
BLUED dataset indicate that the novel voting chi-squared GOF
method outperforms the standard chi-squared GOF test when
applied to traces with a higher base load.

I. INTRODUCTION

Non-intrusive load monitoring (NILM) identifies the per-
appliance energy consumption by first measuring the aggre-
gated energy trace at a single, centralized point in the home
using a sensor and then disaggregating this power consumption
for individual devices using machine learning techniques. This
energy disaggregation method makes it possible to decompose
the electricity bill into the consumption of individual appli-
ances, which can lead to insight and empowerment for the
consumers to reduce their energy consumption in an informed
way. This per-appliance energy consumption is also useful
for energy management tools, as it facilitates the detection of
high energy consuming appliances. This empowers the users
to devise energy conservation strategies, such as re-scheduling
of high power demanding operations for the off-peak times.

This paper focuses on event detection methods that are
capable of determining the step-changes in the power signals,
which occur whenever a device is turned on or off. Once the
events are detected, these changes can in turn be analysed
for appliance recognition. The most commonly used statistical
event detection method is the Generalized Likelihood Ratio
Test (GLRT) [1], which tests if two neighboring windows
representing consecutive time frames share a common distri-
bution. The possible presence of an event in two neighboring
windows is determined by calculating a decision statistic from
the natural log of a ratio of probability density functions in
those neighbouring windows. CUmulative SUM (CUSUM)
filtering [2] is a method to determine changes in the qual-
ity number (e.g., the mean of the values in the windows
or the difference between the predicted and real value) by

testing it against a stopping criterion that describes when an
event occurs. More recently, a χ2 GOF test was introduced
that detects events by assuming, like the GLRT, that two
neighbouring windows share a common distribution. A χ2

test statistic is applied on two neighbouring windows and
an event is assumed if the null hypothesis is rejected [3].
A more straightforward heuristic is defined by the Real-time
Energy Activity Classification Technique (REACT) [4], which
detects events by comparing two consecutive windows of
power signals p and q with equal length n and reports the
occurrence of an event when min(|pi − qi|) (∀i = 1, ..., n)
exceeds a certain threshold.

This paper focuses on the χ2 GOF method as event detec-
tion test as it is widely used, simple and has good performance
[3], [5], [6], [7]. Section II explains the preprocessing of the
power signal. Section III shows that the performance of this
method degrades when high consuming devices are present.
This paper extends the method with a voting scheme, such
that its performance can be improved substantially. Moreover,
section IV proposes a surrogate-based method to identify the
optimal parameter configurations. The performance of the
novel approach is benchmarked and discussed in Section V.
Section VI concludes this paper.

II. PREPROCESSING THE DATA

The input for the standard and voting χ2 GOF method is a
power signal. In [8], it is mentioned that noise and spikes in
the power trace can lead to false detected events. As a solution
to remove the noise, a median filter is applied on the power
signal. Each sample in the power signal pi is replaced by the
median of its m neighbours:

pi = median(pi−m/2 + ...+ pi+m/2) (1)

The parameter m can be trained, see Section IV.

III. VOTING χ2 GOF METHOD

The standard χ2 GOF method [3] detects events by relying
on the fact that the distribution of power values before/after
the occurrence of an event are different. To assess this dif-
ference, a probabilistic χ2 test can be used. Assume two
consecutive non-overlapping windows q = (q1, q2, · · · , qn)
and p = (p1, p2, · · · , pn), each containing n data samples
from the power signal. Then, an event occurs at the end of
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Fig. 1: Detected events (diamond) using the standard χ2 GOF
method with n = 40: (a) sample power trace from [17], (b)
same trace with an added base load of 1500W .

window q with a confidence level of 100(1− α)% and n− 1
degrees of freedom, if

lGOF =

n∑
i=1

(qi − pi)2

pi
> χ2

α,n−1. (2)

The values of χ2
α,n−1 can be looked up in a table [9].

Although this standard χ2 GOF method has shown to be
effective, its performance is sensitive to the base load of the
signal. Figure 1 illustrates this problem: when the power base
level is around 600W and an appliance using 50W is switched
on, the event is correctly detected (Figure 1a). However, the
event is missed if a base load of 1500W is added (Figure 1b).
It is seen from equation (2) that events are characterized as a
change in power (qi − pi) relative to the power signal itself
(pi). Therefore, the method is prone to miss smaller events
when the base load of the signal is high. This can lead to
poor results. As a solution, a voting mechanism (based on the
idea presented in [1]) is proposed in this paper to solve the
problem.

In the voting χ2 GOF method, the GOF is calculated for
each sample in the power signal as given by equation (2). A
voting window of length w slides over the resulting time-series

TABLE I: The configuration parameters g and their range for
the standard χ2 GOF event detection.

standard χ2 GOF

name range

window median filter m 1− 100

window event detection n 1− 100

confidence level α [90, 95, 97.5, 99, 99.9]

TABLE II: The configuration parameters g and their range for
the voting χ2 GOF event detection.

voting χ2 GOF

name range

window median filter m 1− 100

window event detection n 1− 100

window voting system w 1− 100

voting threshold vthr w ∗ [0.1 : 0.1 : 1]

of GOF-values and a sample gets a vote if its GOF-value is
the highest among all points in the voting window. This results
in a maximum of w votes. Each sample receiving at least vthr
votes is flagged as an event. The robustness of the voting
method against changes in base load is shown in Section V.

Although some guidelines on how to choose the parameters
of the statistical tests are given in [3], it is possible to further
increase the detection ratios by optimizing them as shown in
the next section.

IV. PARAMETER OPTIMIZATION

Both the standard and voting χ2 GOF method have con-
figuration parameters g, see Table I and II respectively. The
parameter ranges that are investigated in this paper, lead to
respectively 50.000 and 10.000.000 possible configuration pa-
rameter combinations, which makes a brute-force optimization
infeasible.

Surrogate-Based Optimization (SBO) [10] is proposed,
which can significantly speed up the process of optimizing
the configuration parameters without reducing the granularity
of their ranges. The method assumes that smooth changes in
the configuration parameters will lead to smooth changes in
detection ratios. Under that condition, an exhaustive search
of the overall model parameter space is not required to find
the optimum solution. The training needs following steps, also
depicted in Figure 2:

1) The performance is quantified using a utility function
needing to be maximized. For the event detection meth-
ods, the F-measure is used as suggested in [11]. The
utility function is thus defined as:

F (g) = 2 · precision(g) · recall(g)
precision(g) + recall(g)

, (3)

The ultimate goal is to chose g in such a way that the
F-measure is as high as possible.

2) A limited number of configurations K(= 10) for the
model parameters are chosen according a latin hyper-
cube and the event detection method is applied to obtain



Fig. 3: A graphical illustration of expected improvement: a surrogate model (dashed line) is constructed based on some data
points (circles) of an unknown function F (g). For each point the surrogate model predicts a Gaussian probability density
function (PDF). An example of such a PDF is drawn at g = 0.5.

Fig. 2: A flowchart of surrogate-based optimization.

the F-measure. At the end of this step, the following set
is obtained:

S = {(gk, F (gk)), k = 1 . . .K}. (4)

3) A Kriging model of the F-measure is built as a func-
tion of the parameters listed in Table I or II. This
model predicts the uncertainty of the F-measure as the
realization of a normally distributed random variable
Y (g) ∼ N(µ(g), σ(g)) where µ(g) denotes the pre-
dicted value (µ(g) ∼ F (g) ) and σ(g) denotes the
prediction variance.. More details about Kriging can be
found in literature, e.g., [12].

4) Once a Kriging model is built, the Expected Improve-
ment (EI) measure determines the optimal configuration

of the next parameter configuration g where higher F-
measure values are most likely to occur. In other words,
EI quantifies the Probability of Improvement (PoI),
the amount of improvement that is expected to occur
when a certain configuration is explored as compared
to the optimal value found so far. This is done by
considering every possible improvement over the current
best value, multiplied with the associated likelihood. The
corresponding F-measure of this optimal configuration
point is calculated and is added to the set S.

5) The Kriging model is rebuilt and the process is repeated
until a satisfactory solution is found, i.e., until the
maximum is reached (in our case F = 1), or when the
maximum number of iterations is exceeded. Here, the
maximum iterations is set to 90.

Figure 3 illustrates one iteration of the SBO for the case
where only one parameter g is optimized. The black line
represent the unknown utility function F (g), and the final
goal is to construct a surrogate model of the line equivalent
to the original one. The black circles are the data points for
which the F -measure is calculated and they belong to set S.
For each possible value of the parameter g, a Kriging model
is built. The output of this model for the values in the set
S is the Gaussian N(F (g), 0)). For points not in this set,
the output N(µ(g), σ(g)) is an estimation on the F -measure
(µ(g)) accompanied with a prediction variance (σ(g)). In the
figure, an example of an output is given for g = 0.5. Also,
the PoI for this value is depicted by the gray area enclosed
by the Gaussian. This area equals the difference between the



maximum value in set S (the left most circle) and µ(0.5),
multiplied with the likelihood of parameter 0.5. The parameter
value with the highest gray area is chosen, the according F -
measure is calculated and added to set S.

Thus, rather than computing the results for all possible
model parameters, a surrogate model of the optimization
objective function (the utility function) is generated that is
locally accurate in the regions of interest (the optimum). SBO
has already been applied successfully in other research areas,
like e.g., wireless communication [13], electromagnetics [10],
and microwave filter design [14]. An implementation of the
SBO routine is available in the Surrogate Modelling (SUMO)
Toolbox [15], [16] (available online1).

V. RESULTS

The robustness against different baseload levels of the
methods is tested on the BLUED dataset [17]. The aggregated
active power signal of 60Hz from a family residence in the
United States for a whole week is considered. Every state
transition of each appliance is manually labeled, providing the
ground truth. The considered house has a two-phase power
consumption, where 904 transitions are recorded in phase A
and 1578 in phase B. Since phase B is more noisy than phase
A, they are both optimized and tested separately. For each
method, the data is processed with a median filter.

Performance is evaluated on 20% of the data, whereas the
remaining 80% is used for training. Performance is reported
averaged over 10 runs (each with a random 20% test split).
For training, 5-fold cross validation is used on the other 80%
to set the optimal parameter values. Note that for the division,
the trace of an entire day is taken as a whole unit.

To find out if each method is robust against changes in
the base load of the power signal, the three methods are
applied in three different cases. In all cases, a base load of
respectively 0W, 1500W and 3000W is added to the power
signal. In practice, such high base load conditions arise when
multiple high-power devices are operating in the background,
such as electrical heaters (that can easily consume 1500W).
Considering the results of these use cases, a conclusion can
be made about each method’s robustness.

The results of the standard χ2 GOF method when applied
on the first three cases are given in Figure 4, showing the
spread of the F-measure caused by running the 5-fold cross
validation ten times. When no offset is added, the performance
for phase A is almost perfect (F ≈ 0.98) and for phase B the
performance is F ≈ 0.80. However, this changes when the
base load is increased by adding an offset to the signal. The
F-measure keeps dropping as the offset increases, indicating
that the standard χ2 GOF method is not robust against higher
base loads.

The results of the voting χ2 GOF method when applied on
the first three cases are also shown in Figure 4. As can be
seen, the voting χ2 GOF method gives comparable results to
the standard χ2 GOF method for phase A and B when no

1http://sumo.intec.ugent.be

Fig. 4: The F -measure when detecting events with the standard
χ2 GOF, and voting χ2 GOF.

offset is added. When offsets are added to the signal, the F-
measure remains the same, indicating the robustness of the
voting χ2 GOF method. This in contrast to the standard χ2

GOF method.
When comparing the running time of SBO and the brute-

force approach, it is found that for the standard χ2 GOF
method it is reduced from approximately 124 days to 5.9
hours, and for the voting χ2 GOF method from 189.2 days to
45 hours, resulting in substantial speed up factors.

VI. CONCLUSION

This paper focuses on the robustness of event detection
methods in NILM on real-life power traces (e.g. traces con-
taining high power consuming devices and having a high base
load). A novel event detection method (the voting χ2 GOF
method) is proposed and benchmarked to the standard χ2

GOF method. A performance increase of 7 − 12% in terms
of F -measure is observed. The parameters of the methods
are trained with the proposed surrogate-based optimisation
which runs 100.000 times faster than the standard brute force
approach.
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