
User guide of Complex Vector Fitting toolbox

Implementation of Complex Vector Fitting for rational modeling of baseband S-parameter data

Version 1.0 for Matlab

Surrogate Modeling (SUMO) Group, IDLab, Department of Information Technology,

Ghent University – IMEC, Technologiepark-Zwijnaarde 15, B-9052 Ghent, Belgium

1 Introduction

Baseband equivalent signals and systems are widely used in the simulation of communication systems to

simplify the modulation, demodulation, and filtering process [Jeruchim-06]. In this framework, the

Complex Vector Fitting (CVF) modeling algorithm described in [Ye-19, Spina-19, Spina-20], allows one to

efficiently and accurately perform frequency- and time-domain simulations of baseband systems. Indeed,

starting from a set of frequency-dependent tabulated data describing the baseband scattering parameters

of the system under study, the CVF modeling technique is able to build stable and passive continuous

rational models in the form:

1

K
k

b

k k

s
s p

R

S D (1)

where Sb are the baseband scattering parameters, s = j2πfb is the Laplace variable and fb the baseband

frequency samples, pk are common poles, which can be either real or complex, and Rk are the

corresponding residues, while D is a real matrix. Models in the form (1) can also be expressed via a suitable
state-space representation:

1

b s s

 S C I A B D (2)

to be used for frequency- and time-domain simulations.
This manual describes a collection of Matlab routines called Complex Vector Fitting toolbox for the
rational modeling of multi-port, symmetrical baseband scattering parameter data via CVF. In particular,
the computation of a CVF model is performed via two main functions:

 VFdriver_complex.m: it identifies models (1) and (2) using the pole relocating CVF technique [Ye-
19], starting from a set of frequency-dependent tabulated data. The applied strategy is to stack
the upper triangle of a scattering matrix into a single column which is next fitted by CVF using a
common pole set.

 RPdriver_complex.m: it performs the passivity assessment and, eventually, enforcement of the
computed CVF model. In particular, the passivity enforcement technique described in [Gustavsen-
10] is adopted here, once suitably adapted for baseband systems.

The CVF modeling strategy is summarized in Fig. 1.

Fig. 1: Flowchart of the proposed Matlab routines.

It is important to remark that the model-building phase of CVF can leverage on several robust

methodologies adopted by the Vector Fitting (VF) algorithm [Gustavsen-99]: the pole flipping scheme

[Gustavsen-99], relaxed formulation [Gustavsen-06], and fast implementation based on QR

decomposition [Deschrijver-08] used in VF can be directly adopted for CVF. Hence, the proposed

implementation of the CVF modeling technique is based on the Matrix Fitting Toolbox, which offers a

robust implementation of the VF algorithm and is available at

https://www.sintef.no/projectweb/vectorfitting/downloads/

The proposed code has been tested on Matlab 2018a.

https://www.sintef.no/projectweb/vectorfitting/downloads/

Restrictions of use:

 Embedding any of (or parts from) the routines of the Complex Vector Fitting toolbox in a
commercial software, or a software requiring licensing, is strictly prohibited. This applies to all
routines, see Section 2.1.

 If the code is used in a scientific work, then reference should be made as follows:
o Y. Ye, D. Spina, D. Deschrijver, W. Bogaerts, and T. Dhaene, “Time-domain compact

macromodeling of linear photonic circuits via Complex Vector Fitting”, Photonics

Research, vol.: 7, issue: 7, pag.: 771-782, July 2019

o D. Spina, Y. Ye, D. Deschrijver, W. Bogaerts and T. Dhaene, “Complex Vector Fitting

toolbox: a software package for the modeling and simulation of general linear and

passive baseband systems”, accepted for publication in Electronics Letters, 2021

 The Matrix Fitting Toolbox is required for the code here provided to run correctly (see Section
2.2). However, the Matrix Fitting Toolbox is not included in this distribution: the Matrix Fitting
Toolbox and related information are available at the website

https://www.sintef.no/projectweb/vectorfitting/

Please, verify on the latter website the necessary references to be made when using the Matrix
Fitting Toolbox in a scientific work.

https://www.sintef.no/projectweb/vectorfitting/

2 The software package

2.1 The code
The proposed implementation of CVF consists of the following files:

Main routines

 Create_Rat_Mod_CVF.m: Routine computing the CVF model (calls VFdriver_complex.m and
RPdriver_complex.m).

 VFdriver_complex.m: Driver routine for rational fitting (calls vectfit3_complex.m).

 RPdriver_complex.m: Driver routine for passivity enforcement (calls violextremaS_complex.m
and FRPS_complex.m).

Auxiliary routines

 vectfit3_complex.m: code computing the rational model.

 violextremaS_complex.m: code for passivity assessment.

 FRPS_complex.m: code for passivity enforcement.

Application Example

 Coupled_Micro_Main_File.m: main file to compute a CVF model starting from a set of tabulated
baseband S-parameters. In particular, the VFdriver_complex.m and RPdriver_complex.m are
called via the auxiliary function Create_Rat_Mod_CVF.m.

2.2 Installation instruction
This code requires the Matrix Fitting Toolbox to run correctly, which is not included in this distribution.
The Matrix Fitting Toolbox is developed by Bjørn Gustavsen (email: Bjorn.Gustavsen@sintef.no) and it is
available at https://www.sintef.no/projectweb/vectorfitting/downloads/
Once the Matrix Fitting Toolbox is installed,

 Download the Complex Vector Fitting toolbox.

 Place all files in a common directory, e.g. c:\user\cvfmodeling

 Include the directory in the Matlab search path.

2.3 Code description
The proposed implementation of CVF follows the same structure adopted by the Matrix Fitting Toolbox:
the functions VFdriver.m and RPdriver.m of the Matrix Fitting Toolbox are modified into the functions
VFdriver_complex.m and RPdriver_complex.m in order to model baseband systems, which have an
asymmetric frequency response with regard to the positive and negative frequencies [Ye-19].

2.3.1 VFdriver_complex.m
This function generates a pole-residue model for a data set (s, Sb(s)), with n ports and Ns frequency
samples, and is called in Matlab as:

[SER,rmserr,Sbfit,opts2]=VFdriver_complex(Sb,s,poles,opts)

The input/output parameters of this function are described in details the following.

https://www.sintef.no/projectweb/vectorfitting/downloads/

Input:

 Sb: 3D matrix of size (n, n, Ns) holding the baseband scattering parameters to be fitted.

 s: vector of the frequency samples of length Ns , where s = j2πfb is the Laplace variable and fb the
baseband frequency samples.

 poles: vector of length P holding the initial poles. The initial poles can be specified manually or
chosen in an automated framework (default setting, see below).

 opts: it is an optional structure that can be used for overriding defaults settings and for
requesting plots.

Output:

 SER is a data structure with the model expressed as poles-residues and state-space forms,
where

o SER.poles: vector of length P containing the poles.
o SER.R: 3D matrix of size (n, n, P) representing the (n, n) residue matrices

corresponding to each of the P poles.
o SER.D: (n, n) matrix representing the constant term D in (1) and (2).

o SER.A (nP, nP), SER.B (nP, n) and SER.C (n, nP): state-space matrices A, B and C in
(2).

o rmserr: the resulting RMS-error of the fitting.
o Sbfit: 3D matrix of size (n, n, Ns) with the model response computed for s = j2πfb .

o opts2: contains all the options parameters, including default settings.

The input and output parameters and the fitting options (described in the structure opts) for
VFdriver_complex.m are the same as for VFdriver.m. The reader is referred to the user manual of the
Matrix Fitting Toolbox (and the comments in the code of the function VFdriver_complex.m) for a detailed
description. In the following, the differences between the two routines VFdriver_complex.m and
VFdriver.m in terms of fitting options available to the users will be discussed. A detailed description of the
CVF modeling approach is given in [Ye-19, Spina-19, Spina-20].

Both CVF and VF adopt pole-residue models formed by real and complex poles having a negative real part,
in order to guarantee the stability of the model. However, the complex poles and the corresponding
residues computed via VF must always occur in complex conjugate pairs, but this condition does not hold
for CVF: this has an impact on the pole-selection strategy to choose the initial poles and the model type,
as described below.

Choice of the initial poles
The initial poles can be specified by the user in the vector poles or can be chosen automatically by the
CVF toolbox, with a similar strategy as the one adopted in the Matrix Fitting Toolbox.
In particular, the Matrix Fitting Toolbox implements three automated sampling strategies to select the
initial poles, via the input parameter opts.poletype. The initial poles are chosen as complex
conjugate pairs in the frequency range of interest that are

 linearly spaced opts.poletype='lincmplx'

 logarithmically spaced opts.poletype='logcmplx'

 a mixture of linear and logarithmically spaced opts.poletype='linlogcmplx'
The VFdriver_complex.m function offers the same options, even if the poles are not complex conjugate
pairs anymore. Hence, the relation among the real α and imaginary β part of the initial poles for CVF is

; k k k k kp j c

where c is a constant value representing the ratio of the real and imaginary part of the poles (default value
0.001), and the imaginary part of the initial poles for CVF can be chosen as

 linearly spaced opts.poletype='lincmplx'

 logarithmically spaced opts.poletype='logcmplx'

 a mixture of linear and logarithmically spaced opts.poletype='linlogcmplx'
in the frequency range of interest [2πfmin; 2πfmax].
Figure 2 shows an example of the distribution of the real and imaginary part of the initial poles when
opts.poletype='lincmplx'. The different trend between the imaginary and real part is due to the
following constraint: the real part of all poles must assume negative values in order for the CVF model to
be stable.

Fig. 2: imaginary part (a) and real part (b) of the initial poles. Location of the initial poles in the complex plane (c).

A complete study on the influence of the distribution of the initial poles on the accuracy of the CVF model
has not yet been presented in the literature. The function VFdriver_complex.m assumes linearly spaced
poles as default choice.

Model type
The Matrix Fitting Toolbox allows one to compute models in the form

1

N
i

i i

s s
s p

R

H D E (3)

where H(s) represents the transfer function of the system under study, which can be expressed as
impedance, admittance or scattering parameters. The input parameter opts.asymp decides the model
type:

 opts.asymp=1 --> D=0, E=0 ('Strictly proper')

 opts.asymp=2 --> D~=0, E=0 ('Proper')

 opts.asymp=3 --> D~=0, E~=0 ('Improper')
The proposed implementation of the CVF modeling approach does not allow for an improper model, and
only the options

 opts.asymp=1 --> D=0, E=0 ('Strictly proper')

 opts.asymp=2 --> D~=0, E=0 ('Proper') (Default value)
are valid.
Additionally, the equivalent state-space representation of (3) can be computed as real-valued (matrix A
is block-diagonal) or complex valued (matrix A is diagonal). This is possible since the complex poles of a

VF model are in complex conjugate pairs. The user can decide the model type via the input parameter

opts.cmplx_ss:

 opts.cmplx_ss=1 generates complex state space model with diagonal A

 opts.cmplx_ss=0 generates real-only state space model with block-diagonal A
Rational models computed via CVF are always complex-valued by construction, since the complex poles
are not computed as complex conjugate pairs. Hence, the parameter opts.cmplx_ss is assumed equal
to 1 by default, and it is the only admissible value.

Plotting fitting results
The results of the fitting process can be plotted by the function VFdriver_complex.m using the same
options as VFdriver.m. The figures generated by the function depend on the input parameters

 opts.plot, opts.logx, opts.logy, opts.errplot, opts.phaseplot

which are described in the user manual of the Matrix Fitting Toolbox. Only one difference is to be
remarked: if the user chooses to a logarithmic axis for the frequency values, only the modeling results at
positive frequencies will be displayed. Since baseband scattering parameters have also components at
negative frequency values (by definition), choosing this option is discouraged. By default, the function
VFdriver_complex.m will plot the results adopting a linear axis for the frequency values. Fitting results are
always plotted in figure 101 for the magnitude and figure 102 for the phase.

2.3.2 RPdriver_complex.m
This function performs the passivity assessment and, eventually, enforcement of a CVF model. The reader
is referred to [Ye-18, Ye-19] for a detailed discussion on the passivity conditions for baseband signals and
systems.

[SER,Sbfit,opts2]=RPdriver_complex(SER,s,opts)

Input

 SER: structure computed by VFdriver_complex.m containing the CVF model.

 s: vector holding the frequency samples of length Ns, s = j2πfb is the Laplace variable and fb the
baseband frequency samples.

 opts: optional structure that can be used for overriding defaults settings and for requesting
plots.

Output

 SER: data structure containing the CVF model, where the passivity violations are corrected (for
both poles/residues and state-space forms).

 Sbfit: 3D matrix of size (n, n, Ns) with the model response computed for s = j2πfb .

 opts2: contains all the options parameters, including default settings.

The passivity assessment is based on the computation of the eigenvalues of the Hamiltonian matrix. The
main differences with respect to VF models are as follows:

 The Hermitian operator is used in the Hamiltonian matrix rather than the transpose operator,
since the CVF state-space matrices are complex [Ye-19, Spina-20].

 As a result, half-size passivity tests such as the one in [Gustavsen-08] cannot be adopted and the
eigenvalues of the entire Hamiltonian matrix must be computed.

The CVF model passivity is enforced by perturbation of the residue matrix eigenvalues. In the proposed
software package, the passivity enforcement implemented in the functions RPdriver.m and FRPS.m of the
Matrix Fitting Toolbox is suitably modified, since complex poles are not computed as complex conjugate
pairs in CVF. However, the input and output parameters and the passivity assessment/enforcement
options (described in the structure opts) for RPdriver_complex.m are the same as for RPdriver.m. The
reader is referred to the user manual of the Matrix Fitting Toolbox for a detailed description. From a user
perspective, there are only two relevant differences:

 The CFV modeling technique described in [Ye-19, Spina-19, Spina-20] is applicable only to
scattering parameters, while the function RPdriver.m can also be adopted to model admittance
parameters.

 Additionally, state-space representations computed via CVF are always complex-valued, while
real-valued ones are also admissible for VF. Hence, the input parameters
opts.parametertype and opts.cmplx_ss can assume only one value:

 opts.parametertype='S' Data is expressed as scattering parameters.

 opts.cmplx_ss=1 The rational model to be perturbed is a complex-valued one.
These two options are the default ones and cannot be modified in order for the code to work correctly.

3 Application Example
One application example is provided with this software package in the file “Coupled_Micro_Main_File.m”.
The system under study is formed by three coupled microstrips, described in [Medico-19] and shown in
Fig. 3. The conductors have length l = 5 cm and width w = 120 μm. The spacing between the microstrips
is s1 = 200 μm and s2 = 100 μm. The substrate is a Roger RT/duroid 5880 with relative permittivity ϵ = 2.2
and thickness h = 127 μm. The scattering parameters of the microstrips are simulated in Advanced Design
System (ADS, Keysight Technologies) in the frequency range [30; 90] GHz for 601 linearly-spaced
frequency samples and are stored in the Matlab dataset “3Coupled_micros_Initial_Data.mat”.
The corresponding baseband S-parameters are obtained by shifting the scattering parameters computed
via ADS around the central frequency fc = 57 GHz. Hence, the baseband S-parameters are defined in the
frequency range [-27; 33] GHz: this choice illustrates the ability of CVF to model baseband S-parameters
defined for different positive and negative frequency values. The problem under study is quite
challenging, since the frequency range considered is relatively large (60 GHz) and the baseband S-
parameters have a dynamic behavior (see Fig. 4a). However, CVF is able to compute an accurate, stable
and passive model with 69 poles, with a maximum absolute error among the data and the model response
of less than 50 dB (see Fig. 4b).

Fig. 3: (a) Coupled microstrips with the ports indicated in blue. (b) Cross section.

Fig. 4: (a) Baseband S-parameters. (b) CVF modeling results: baseband S-parameters (red line), CVF model response (blue

dashed line), modeling error (green line).

References

[Jeruchim-06] M. C. Jeruchim, P. Balaban, and K. S. Shanmugan, Simulation of Communication Systems:

Modeling, Methodology and Techniques (Springer, 2006).

[Ye-19] Y. Ye, D. Spina, D. Deschrijver, W. Bogaerts, and T. Dhaene, “Time-domain compact

macromodeling of linear photonic circuits via Complex Vector Fitting”, Photonics Research, vol.: 7, issue:

7, pag.: 771-782, July 2019

[Spina-19] Y. Ye, D. Spina, D. Deschrijver, W. Bogaerts and T. Dhaene, “Efficient Time-Domain Modeling

and Simulation of Passive Bandpass Systems”, Proceedings of International Conference on

Electromagnetics in Advanced Applications (ICEAA), Granada, Spain, 9-13 September 2019

[Spina-20] D. Spina, Y. Ye, D. Deschrijver, W. Bogaerts and T. Dhaene, “Complex Vector Fitting toolbox: a

software package for the modeling and simulation of general linear and passive baseband systems”,

submitted to Electronics Letters, 2020

[Gustavsen-99] B. Gustavsen and A. Semlyen, “Rational approximation of frequency domain responses

by vector fitting,” IEEE Trans. Power Delivery 14, 1052–1061 (1999).

[Gustavsen-06] B. Gustavsen, “Improving the pole relocating properties of vector fitting,” IEEE Trans.

Power Delivery 21, 1587–1592 (2006).

[Deschrijver-08] D. Deschrijver, M. Mrozowski, T. Dhaene, and D. De Zutter, “Macromodeling of

multiport systems using a fast implementation of the vector fitting method,” IEEE Microwave Compon.

Lett. 18, 383–385 (2008).

[Gustavsen-10] B. Gustavsen, “Fast passivity enforcement for S-parameter models by perturbation of

residue matrix eigenvalues,” IEEE Trans. Adv. Packag. 33, 257–265 (2010).

[Ye-18] Y. Ye, D. Spina, Y. Xing, W. Bogaerts, T. Dhaene, “Numerical modeling of a linear photonic system

for accurate and efficient time-domain simulations”, Photonics Research, vol.: 6, issue: 6, pag.: 560 -

573, June 2018

[Gustavsen-08] B. Gustavsen and A. Semlyen, “Fast passivity assessment for S-parameter rational

models via a half-size test matrix”, IEEE Trans. Microwave Theory Tech. 56, 2701–2708 (2008).

[Medico-19] R. Medico, D. Spina, D. Vande Ginste, D. Deschrijver and T. Dhaene, “Machine-Learning-

Based Error Detection and Design Optimization in Signal Integrity Applications”, IEEE Transactions on

Components, Packaging and Manufacturing Technology, vol. 9, no. 9, pp. 1712-1720, Sept. 2019

