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Abstract—This paper presents a novel wideband baseband
macromodeling framework tailored for the representation of lin-
ear and passive photonic filters. The proposed framework is able
to efficiently estimate the baseband scattering representations
of such filters as a function of the delay in the waveguides
that control their center frequency. Notably, the macromodel
allows for frequency and time-domain simulations at arbitrary
optical carrier frequencies, making it especially well-suited for
multi-wavelength system modeling and simulations. Although
initially demonstrated in the context of photonic filters, a similar
approach can be applied to baseband radio frequency (RF)
systems. One application example is presented to demonstrate
the flexibility and advantages of the proposed method.

Index Terms—Photonic design automation (PDA), Vector fit-
ting, parametric macromodeling, photonic integrated circuits.

I. INTRODUCTION

BENEFITING from the combination of a very high index
contrast and the compatibility with the CMOS fabrica-

tion technology, silicon photonic integrated circuits (PICs)
are experiencing rapid growth in complexity, functionality,
and integration scale. Since traditional electromagnetic (EM)
modeling techniques are not suitable for directly simulating
larger circuits, the PIC design flow is embracing electronic
design automation (EDA) principles, favoring a more common
circuit-level modeling approach [1]. This necessitates compact
and efficient behavioral models that can substitute for the ex-
pensive EM simulations while ensuring a comparable accuracy
[2].

A prominent subclass of photonic components are passive
filters, such as ring resonators and Mach-Zehnder interfer-
ometers, whose behavior is best defined in the frequency-
domain in terms of a scattering matrix. While these filters are
usually characterized by various design parameters that shape
the frequency response of the device, their center frequency
is typically controlled by a single time delay. Consequently, a
widely adopted approach among designers is to initially design
the desired frequency response of the filter, and then create
multiple instances of it, each with its own center frequency,
to construct systems like a wavelength division multiplexing
(WDM) filter bank.

This work has been supported by the Flemish Government under the
‘Onderzoeksprogramma Artificiële Intelligentie (AI) Vlaanderen’ and the
‘Fonds Wetenschappelijk Onderzoek (FWO)’ programs.

II. METHODOLOGY

Building upon the previous research conducted by Ye et
al. [3], [4], this work presents a novel wideband baseband
macromodeling framework tailored for the representation of
linear and passive photonic filters whose center frequency
is controlled by a single delay parameter, implemented by
optical waveguides. In the following sections, the various steps
involved in the proposed methodology are outlined.

A. Complex Vector Fitting (CVF)

The proposed parametric macromodeling framework in this
work relies on the CVF algorithm [3] and starts from the
scattering parameters of the photonic device under study,
computed for a specific parameter configuration, typically
chosen at the center of the design space. Let us assume that the
scattering parameters of a photonic device have been acquired
by means of EM simulations for a discrete set of frequencies
within the bandwidth of interest: S(fr) for r = 1, ..., R.
The frequency response of the baseband equivalent system is
then computed by shifting S(fr) to baseband by substituting
fi = fr − fc, where fc is the optical carrier frequency. Next,
the baseband scattering parameters Sl(fi) are fed to the CVF
algorithm, which builds a pole-residue model in the form [3]

Sl(s) =

K−1∑
k=0

Rk

s− pk
+D (1)

where s = j2πf is the Laplace variable, Rk ∈ Cn×n are the
computed complex residues, pk are the complex poles, and
D ∈ Rn×n is a real matrix modeling the asymptotic response
at high frequencies, where n is the total number of ports of
the system under study. Starting from the rational model (1),
it is possible to derive the corresponding state-space system
analytically. This allows expressing the baseband scattering
parameters Sl(s) as a function the state-space matrices,

Sl(s) = C (sIm −A)
−1

B+D (2)

where m = nK, A ∈ Cm×m is a diagonal matrix with the
poles pk at its non-zero entries, B ∈ Rm×n is a matrix that
only has zeros or ones, C ∈ Cn×m is formed by horizontally
stacking the residue matrices Rk and D ∈ Rn×n is the same
matrix as in (1).
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B. Wideband baseband macromodels

Prior to building the complex pole-residue model, it is
necessary to select a specific value for the optical carrier
frequency fc in order to shift the photonic frequency response
to baseband. If a new value of the carrier frequency is chosen,
a new model in the form (2) must be computed. It is often not
known upfront at which optical frequency(ies) the designers
intend to perform simulations, so the modeling approach in
Ye et al. [3] is not very flexible and it does not scale well
for systems with multiple wavelength channels. In order to
overcome these limitations, the model (2) is parameterized
with respect to the optical carrier frequency by shifting its
spectrum along the frequency axis by ∆fc

Sw(f,∆fc) = C (j2π(f +∆fc)Im −A)
−1

B+D (3)

Expression (3) represents a new baseband equivalent system at
center frequency fcs = fc +∆fc by means of the state-space
matrices (A−j2π∆fcIm), B, C and D. It should be noted
that the new model can be directly obtained by shifting all
the poles of the state-space model (2) computed at the optical
carrier frequency fc by j2π∆fc. While the wideband state-
space model (3) can be adopted for simulation at arbitrary
optical carrier frequencies, it will be demonstrated that it can
also be used to represent the variable delays in photonic filters.

C. Basic operating principles of optical filters

Most optical filters are based on interference of light with
different delays. Incident light is separated over different paths,
each with a different time delay ∆ti. At the end, the different
parts are recombined by interference. Constructive interference
will result in high transmission, and destructive interference
will result in low transmission. The phase difference be-
tween two paths with a delay ∆t is frequency dependent:
∆ϕ = 2πf∆t. Therefore, a time delay between two paths
will translate into a frequency dependent interference. In most
cases, the delays are integer multiples of a single delay ∆t.
The delays can be organized in a feed-forward or feed-back
topology, or a mixture of both.

In integrated optical filters, the delays are implemented by
routing light through waveguides. The delay ∆t corresponds
to

∆t =
∆L · ng

c0
(4)

where ∆L is the physical length of the waveguide, ng is the
group index of the waveguide and c0 is the speed of light in
vacuum. The phase delay ∆ϕ in the delay line is

∆ϕ = 2π
f · neff ·∆L

c0
(5)

where neff is the effective index of the waveguide. The center
frequency of an optical filter for the kth interference order is
given by

fk =
k · c0

∆L · neff (fk)
(6)

Rather than a single pass-band, the transmission spectrum
selects multiple frequency or wavelength bands, separated

by a free spectral range (FSR). This usually means that the
operating range of the filter is limited to a single FSR. Tuning
the center frequency of the filter affects both its magnitude and
phase response. Nevertheless, if the center frequency is varied
within one FSR, the resulting changes in magnitude and phase
are relatively moderate.

D. Parametric delay modeling

Equation (6) indicates that the center frequency of the
filter can be adjusted either by varying the length of the
delay lines or by modifying their effective index, for instance,
by altering the waveguide cross-sectional dimensions. In this
work, the parameterization of the filter’s response with respect
to the center frequency is achieved in a similar manner as the
parameterization with respect to the optical carrier frequency,
i.e. by shifting the poles of the wideband macromodel by
j2π∆fk. However, in order to also accurately represent the
filter’s phase response, each scattering parameter of the wide-
band macromodel must be corrected with an additional phase
delay. This is achieved by multiplying the elements of the
residue matrices Rk(ij) and the elements of the asymptotic
response matrix D(ij) in (1) with e−j(∆ϕij+∆tijf) to form
the frequency-dependent matrices Cw(f) and Dw(f). The
model parameters ∆fk, ∆ϕij and ∆tij are the variable center
frequency, phase shifts and phase delays respectively, and are
functions of the physical length L and effective index neff of
the waveguides. In the frequency domain, the model can be
represented as follows

Ŝw(f,∆fc,∆L, neff ) = (Cw(f)(j2π(f +∆fk +∆fc)Im

−A)−1B+Dw(f)) (7)

where the parameter ∆fc is used to adjust the optical carrier
frequency fcs of the simulation. While not discussed in
this work, leveraging the state-space representation and the
time-delay property of the Laplace transform, the frequency-
domain model (7) can be converted into a set of ordinary
differential equations (ODEs) that can be adopted for time-
domain simulations.

III. APPLICATION EXAMPLE

In this numerical example, the frequency-domain modeling
of a balanced Mach-Zehnder interferometer (MZI) is dis-
cussed. The layout of the MZI, comprising two directional
couplers and two waveguides, is illustrated in Fig. 1. The
center frequency is swept over one FSR from 192.7THz to
194.1THz by varying the length of the upper waveguide arm
according to ∆L ∈ [67.8, 68.5] µm. The directional couplers
are simulated in Lumerical FDTD whereas the waveguides are
analytic models that take into account the linear dispersion.
The scattering parameters of the entire device are evaluated
in Luceda IPKISS over the frequency range [192.0; 194.9]
THz at the center of the parameter range, i.e. L = 68.15 µm.
Next, the scattering parameters are shifted to baseband using
fc = 193.42THz. Following the CVF modeling procedure, a
stable and passive CVF model is built with 13 poles, leading
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to a maximum modeling error between the data and the model
response below −62.1 dB.

Fig. 1. Layout of the MZI.

By plugging the effective index of the linear dispersive
waveguides in (6) and solving for fk, it is possible to express
∆fk in terms of the waveguide length. The model parameters
∆tij and ∆ϕij are derived from a physics-based analysis of
the filter, but since their expressions are quite lengthy, they are
not discussed here. Then, by taking the state-space matrices
of the CVF model, and combining them with ∆fk, ∆tij and
∆ϕij , it is possible to build the wideband macromodel (7). In
the results below, the optical carrier frequency is not varied,
and ∆fc is fixed at 0.

Now that the model is computed, it can be used to predict
the frequency response of the MZI, as illustrated in Fig. 2.
It is important to note that the largest errors are expected
at the edge of the design space, where the magnitude and
phase response are mostly affected by the change of the center
frequency. To illustrate this, the model accuracy, defined as the
RMS error w.r.t. the simulation data, is evaluated for different
values of ∆L, see Fig. 3. Although the model performance is
reduced near the edges of the design space, it still achieves
a reasonable accuracy which should generally suffice for
most practical design and optimization applications. While
not discussed here, time-domain simulation at arbitrary optical
carrier frequency can be performed by solving the system of
ODEs that can be derived from (7). Moreover, it is possible to
convert the resulting system of ODEs in an equivalent SPICE
netlist, as discussed in [5].

IV. CONCLUSION

In conclusion, the key strength of this parametric wideband
macromodel lies in its capacity to attain accurate representa-
tions with a minimal set of expensive electromagnetic (EM)
simulations, resulting in significant benefits in terms of com-
pactness and simulation speed. Furthermore, the macromodel
successfully captures the dispersive characteristics of the de-
vice, enabling precise and reliable simulations. Moreover, its
flexibility to be simulated at multiple wavelengths enhances
its applicability and practicality, making it a valuable tool for
modeling and simulating WDM systems.
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Fig. 2. The magnitude response of the wideband baseband macromodel
(7), computed following the methodology outlined in this work, evaluated
for ∆L = 67.8 µm. The red solid line represents the simulated scattering
parameters, the blue dashed lines represent the model, and the green line is
the magnitude of the error between the two.
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Fig. 3. RMS absolute error between the model and the simulated data for
different values of ∆L.
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