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Abstract— In microwave design, Bayesian optimization (BO)
techniques have been widely applied to the optimization of the
frequency response of components and devices. The common
approach in BO is to model and maximize an objective function
over the design parameters, in order to find the optimal spectral
response. Such an approach avoids the direct modeling of spectral
responses, which is a challenging task for the typical data-efficient
surrogate models used in BO. Simple objective functions may lead
to a suboptimal solutions, while complicated objectives require
more powerful and less data-efficient surrogate models. To resolve
this issue, this article proposes to adopt a deep Gaussian
process (DGP) to directly model all relevant S coefficients over
the frequency and the design parameter ranges of interest.
Subsequently, an objective probability distribution is retrieved
from the DGP model and maximized using a BO scheme. The
proposed approach is tested on two suitable microwave examples
and compared to the standard BO approach. Results show
increased accuracy in identifying the optimal frequency response
for the given design parameters and the desired objective, while
maintaining high data efficiency.

Index Terms— Bayesian optimization (BO), deep Gaussian
processes (DGPs), electronic design automation (EDA), S coeffi-
cients.

I. INTRODUCTION

A COMMON problem in electronic design automation
(EDA) is to find the value of the design parameters (i.e.,

width and length of metallic traces, the relative permittivity of
a dielectric) giving the desired response for a simulated device
under test (DUT). This is typically done via optimization
algorithms, that are able to adapt the value of the design
parameters in an automated framework, until the desired
performances are reached. However, any change to the design
parameters requires to execute a new simulation, which can
be computationally expensive. This is particularly relevant for
modern microwave devices, considering that bandwidth and
circuit complexity are increasing, and full-wave simulations
are usually required to correctly characterize the DUT. In order
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to reduce the number of required simulations and thus increas-
ing the efficiency of modern optimization strategies, several
techniques based on surrogate models have been proposed in
the last decade [1]. A surrogate model is a suitable mathe-
matical model that, once trained, can effectively replace the
simulator by representing the DUT’s response over the design
parameters space. Given that evaluating a surrogate model is
computationally cheap compared to physics-based simulations,
many different design configurations can be rapidly tested by
querying the surrogate model.

When plenty of simulated data is readily available, a high-
complexity model can be trained, such that the optimal
parameter combination is accurately predicted. In this case,
optimization strategies can be built upon powerful machine
learning (ML) models such as artificial neural network (ANN),
which have been widely employed for modeling and optimiza-
tion of microwave devices [2], [3]. Less computationally inten-
sive surrogates include Gaussian process (GP) regression [4],
[5] and Support Vector Machines [6].

On the other hand, when the amount of simulated data
is limited, it is beneficial to update a surrogate model in a
sequential fashion, as soon as new simulation results become
available. Then, at each iteration, new simulated data is
acquired based on an adequate sampling strategy. Several
optimization techniques have been presented in literature based
on such iterative model-building approach [7], [8], also known
as active learning or adaptive sampling. In this contribution,
we focus on Bayesian optimization (BO) [9], [10], [11], where
a stochastic surrogate model is used to select consecutive
simulations in order to find the optimal performance.

For linear and passive microwave devices, design spec-
ifications are typically expressed in terms of requirements
on the DUT transfer function (i.e., impedance, admittance
or scattering parameters). For example, consider a bandpass
filter: a typical design goal is to obtain the desired attenuation
in a suitable frequency range. Hence, in recent years, active
learning has been applied to the optimization of scattering
parameters (S responses). In this framework, optimization
strategies often rely on the definition of an objective function
assigning an aggregate score to any S response, based on the
design requirements. Then, a surrogate model can be trained to
predict the objective function for each set of design parameters
in order to be used in an optimization framework.

Note that, if the objective function is defined as an aggre-
gated measure over the entire frequency range of interest,
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Fig. 1. Example of a DGP architecture.

it is not necessary to model directly the complex-valued
and frequency-dependent scattering parameters of the DUT.
This simplifies significantly the complexity of the function
to be approximated via surrogate mode. An example of such
an objective function is the maximum absolute error over
the chosen frequency range between the desired S response
and the response, obtained for the chosen design parameters.
In this framework, relatively simple and efficient mathematical
techniques can be adopted to accurately model the objective
function. A popular choice in BO is the GP [12] model, thanks
to its efficiency and flexibility. However, the definition of
the objective function becomes crucial to obtain satisfactory
optimization results: expressing the design requirements via
simple objectives may lead to suboptimal performance of the
DUT, while an objective function based on complex design
specifications may require more powerful surrogate models
than GPs in order to be modeled accurately.

In this article, a new strategy named spectral model BO
(SMBO) is introduced for data-efficient optimization of S
responses. The proposed approach exploits the increased mod-
eling power of deep GPs (DGPs) [13] in order to directly
learn the magnitude (or phase) of the scattering parameters,
rather than modeling an objective function. Subsequently, S
responses can be predicted by a DGP and ranked based
on complex design specifications. The response ranking is
executed by an objective probability distribution on the DGP’s
predictions. Finally, the objective distribution can be max-
imized following a Bayesian active learning strategy [15],
in order to improve the model accuracy and to find the optimal
design parameters. The rest of the contribution is organized as
follows. In Section II, an overview of DGP characteristics and
advantages over standard GP is available. Next, Section III
presents a detailed description of the standard BO approach via
objective function and the proposed SMBO technique, high-
lighting their differences. Two suitable application examples
are presented in Sections IV and V to validate the new SMBO
method, including a comparison between DGPs and standard
GPs for the modeling of S responses over the frequency.
Lastly, conclusions are drawn in Section VI.

II. BACKGROUND ON DGPS

Let x be a sample vector of variables and y(x) a scalar
function to be modeled. A GP represents any observed sample
as a random Gaussian variable with specified mean µ(x) and
covariance matrix K (x, x ′), which contains the covariance
between any two samples x and x ′. Consequently, given
a new test sample x∗, the probability distribution of y(x∗)
conditioned to the available samples is Gaussian as well (also
known as posterior). This property allows one to analyti-
cally compute the mean and the variance of the posterior,
by applying GP regression [12], which exploits the principle of

Bayesian inference. The obtained mean and variance represent
the predicted value and the confidence interval of the GP,
respectively. In ML, many popular models are parametric: they
represent the observed data as a function of trainable parame-
ters of high, prefixed, cardinality. ANNs are a typical example.
On the contrary, GP is a non-parametric model: the observed
data is fully expressed as realizations of random Gaussian
variables by the mean and the covariance matrix. Thus, the GP
prediction can be efficiently computed from relatively few data
samples. However, GP modeling may become intractable for a
high amount of data, since it requires the inversion of an initial
covariance matrix K whose size grows as the square of the
number of the data samples. This problem is exacerbated by
the curse of dimensionality: functions y that are defined over
more input dimensions require increasingly more data to be
represented accurately. In order to mitigate this intractability,
the sparse GP (SGP) has been introduced [17].

The main disadvantage of standard GP and SGP models
is their poor accuracy in modeling discontinuous functions
or functions that are generated by a nonstationary stochastic
process. Indeed, these properties can only be enforced by the
user via a specific covariance function design. Therefore, high
inaccuracy may occur when no prior knowledge is available on
the stationarity or the discontinuity in y. This is often the case
for response functions of engineering systems that operate in
different regimes, depending on the input variables [16].

To solve this problem, the DGP model has been intro-
duced [13], [14], which is able to capture local properties of
the function by using a composition of multiple GPs. In fact,
in its simplest form, the DGP is composed by a stack of GPs,
from the input variables to the output. Each intermediate GP,
except the last, constitutes a hidden layer that produces a latent
encoding of the input variables. Fig. 1 shows an example of a
DGP architecture. Similar to SGP, the variational inference is
applied in the DGP, allowing the training with a high amount
of data. In fact, the output distribution at each intermediate
layer is approximated via inducing points.

Being non-parametric, the DGP model preserves high
data efficiency. Furthermore, its composite structure allows
for higher modeling accuracy for complicated functions.
However, since the DGP posterior is not analytical, its
mean and variance can only be approximated statistically,
by recording multiple model predictions for each input value.
Therefore, the DGP uncertainty on the prediction is more
computationally expensive than a simple GP or SGP. The
interested reader is referred to [13] and [14] for a detailed
description of the DPG properties.

To the best of our knowledge, in this contribution, DGPs are
employed for the first time in microwave device optimization
as surrogate models for S responses over the design parameter
and the frequency. In fact, the previously described properties
enable an excellent trade-off between model complexity and
data efficiency.

III. METHODOLOGY

As mentioned in the Introduction, surrogate models have
been developed to speed up microwave devices optimization
by replacing expensive simulations. In particular, stochastic
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Fig. 2. Standard BO scheme using an objective function model over the
design parameters.

models such as GP and DGP offer an additional advantage:
they both provide an expected value (mean) and a confidence
interval (variance) for the modeled quantity. This information
is crucial in the execution of optimization schemes based on
Bayesian inference, as described in detail in the following
paragraph.

A. BO via Objective Function Modeling

Let p = [p0, . . . , pn p ] be the vector containing specific
values of n p design parameters for the microwave device under
study. Additionally, let f be the discrete frequency value at
which the scattering parameters of the device are simulated.
Each S response, i.e., the magnitude or phase of an element
of the scattering matrix, can be considered a function s over
the design parameters and the frequency: s( p, f ). Then, an S
response is constituted by all the samples of s acquired at
different frequencies for the same values of p. Using this
notation, an objective function q can be defined over the space
of all the possible p values

q( p) = q(s( p, f )). (1)

The purpose of the objective function is to assign a single
score to any S response. In this way, the design parameters
popt corresponding to the optimal response can be identified
by solving a simple minimization or maximization problem.
For example, minimization can be adopted when the objec-
tive function is defined as an error measure (i.e., optimal
performance is characterized by minimum error), while a
maximization problem can be solved when the objective
function represents the desired performance measure (i.e.,
transmissivity of a filter in the passband). Without loss of
generality, let us focus on the formulation of the optimization
as a maximization problem

popt = arg max
p

q( p). (2)

In order to solve (2), a Bayesian strategy typically follows
the scheme in Fig. 2: a stochastic surrogate model reproduces
the objective function over the design parameters, then the
maximum of the objective is identified using the surrogate.
The first step of the strategy is to collect a small initial set of
S response samples (Nr ). Second, an objective function q is
computed for each response: a set of samples of the objective
function is obtained. Third, a surrogate model is trained to
reproduce q . By employing a GP model: q( p) ∼ GP( p).
At this point, the model can predict the value of the objective
function for any combination of design parameters. Next, the
optimization process is halted if a stop condition is verified.

Fig. 3. Proposed SMBO scheme based on a DGP model of the S response
over the frequency.

Otherwise, an acquisition function is computed. In a BO
framework, the acquisition function α is defined in order
to select the next sample of the design parameters pi+1 to
be evaluated, which corresponds to the value of the design
parameters that is most likely to lead to the optimal solution.
In particular, this is performed by solving the following
problem:

pi+1 = arg max
p

[α(q( p))]. (3)

Then, a new S response s( pi+1, f ) is simulated for selected
design parameters and it is added to the initial set of samples.
These steps are iterated until the stop condition is verified.
At each iteration, the popt can be easily estimated by applying
a strategy based on Monte Carlo [18] sampling of the GP
model, which is computationally efficient to evaluate. During
this process, the accuracy of the surrogate model is likely to
improve for parameters values that are close to the maximum
of the objective function.

Note that in the described optimization strategy, the per-
formance of the surrogate model is strongly dependent on
the definition of the objective function. In fact, the objective
function should be sufficiently simple to model, allowing for
an accurate prediction and a fast convergence to the maximum.
However, in practice, the objective function must account
for several design specifications on the S response. These
can be imposed by defining multiple objective functions and
then executing a multiobjective optimization algorithm [19],
[20]. However, since it exploits multioutput models, this
technique does not return a unique solution, but a Pareto set
of possible solutions. Alternatively, multiple objectives can
be formulated into a single function before modeling, using
scalarization [21]. For example, multiple design objectives can
be combined into a single objective function via a user-defined
weighted sum. Nonetheless, scalarized objective functions are
typically more complex than their single objective constituents.
Thus, their maximization may require more complicated sur-
rogate models and more sampling iterations.

B. Spectral Model BO

In this section, the new SMBO strategy is developed.
The proposed approach overcomes the previously described
trade-off between the multiple S response requirements and the
objective function’s complexity. In fact, the surrogate modeling
of the objective function is avoided altogether, by following
the scheme in Fig. 3. In this strategy, like in standard BO,
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a surrogate model is sequentially updated and the next value
of the design parameters to be evaluated pi+1 is selected by an
acquisition function. However, in this case, a DGP model is
used to directly learn the S response values as a function of the
design parameters and the frequency: s( p, f ) ∼ DGP( p, f ).
Next, an objective value is assigned to each possible S
response predicted by the DGP. In standard BO, this task
is performed by the objective function q . However, using q
as a deterministic function on the model prediction is not
sufficient in this case. In fact, the subsequent acquisition
function requires a confidence interval on every objective
value. For this purpose, a new objective probability distribution
q̂ is hereby derived.

First, let g be a goal function over the S response, which
is linear for any test frequency in a user-defined set Tf

g(s, f ) = a( f )s + b( f ); a( f ), b( f ) ∈ R ∀ f ∈ T f (4)

where a( f ), b( f ) are frequency-dependent linear coefficients.
These coefficients can be selected according to desired device
specifications, such that higher values of g correspond to better
values of s. For example, g can represent the distance between
the S response and a lower (or upper) limit given by the
specifications. Then, by computing g on the DGP model

g( p, f ) = g(DGP( p, f ), f ); f ∈ T f . (5)

Since the values predicted by the DGP obey to a Normal
distribution and g is a linear function for any test frequency,
then the g values are also normally distributed

E[g( p, f )] = g(E[DGP( p, f )], f ); f ∈ Tf (6a)

Var[g( p, f )] ∝ Var(DGP( p, f ), f ); f ∈ T f (6b)

where Var is the variance operator. Next, by summing up all
the values of g across all the test frequencies, the new objective
probability distribution is obtained

q̂( p) =
∑

f ∈T f

g( p, f ). (7)

Since the q̂ is a sum of random Gaussian variables, its mean
and variance can be computed analytically

E[q̂( p)] =
∑

f ∈T f

(E[g( p, f )]) (8a)

Var[q̂( p)] =
∑

f ∈T f

∑

f ′∈T f

Var[g( p, f ), g( p, f ′)] (8b)

where Cov is the covariance operator for each pair of test
frequencies f, f ′ ∈ T f . The mean and variance of the
objective distribution provide an objective estimation and a
confidence interval for each combination of design parameters
p, respectively.

Finally, similar to (3), the acquisition function can be
computed on q̂, in order to select the value of the design
parameters pi+1 for next simulation. As a result, the SMBO
aims at maximizing the expectation of q̂

popt = arg max
p

E[q̂( p]). (9)

Fig. 4. Application I: Geometry of the microstrip bandpass filter (top layer).

From another perspective, the combination of DGP and
g is analogous to a multiobjective model, where g( p, f ) is
a collection of many objective functions over p. Then, the
definition of q̂ in (7) can be interpreted as a scalarization of
g objective functions over the frequency. However, in con-
trast with the modeling of scalarized objectives, the mutual
information between different frequencies is not lost, but it is
learned by the spectral surrogate model and combined in the
objective distribution.

Compared to the standard BO described in Section III-A,
the new strategy adds another input dimension to the sur-
rogate model: the frequency. Consequently, higher training
and prediction times are necessary in each iteration for the
computation of the objective distribution. However, the advan-
tage of SMBO is that the surrogate model is independent of
the choice of the objective function since the S response is
modeled instead. Therefore, the objective definition can be
changed without having to build again the spectral model from
scratch. This is beneficial in the human-in-the-loop (HITL)
optimization scenario, or when the chosen objectives need
some fine-tuning.

Furthermore, no assumption is made on the test frequencies
T f , since they should be selected according to the design
specifications. Thus, g can be calculated at frequencies that
are different from the simulated data samples, thanks to the
interpolation operated by the surrogate. Then, s values can
also be acquired at different frequencies for each parame-
ter combination p, without modifying the objective defini-
tion. This enables the usage of adaptive frequency sampling
schemes [22] in the simulation software, thus further acceler-
ating data acquisition during the model training.

IV. APPLICATION I: ZIG-ZAG BANDPASS FILTER

The proposed SMBO methodology is tested on a microstrip
bandpass filter [23]. The material chosen as substrate is
0.5 mm thick, with relative permittivity ε = 2.2 and loss
tangent tan δ = 0.0009. The top layer geometry of the DUT is
shown in Fig. 4. The gap among the horizontal conductors is
0.3 mm, while all the conductors have a width of 0.4 mm. This
structure results in a very narrowband response. The S matrix
of the DUT is computed via the advanced design system
(ADS) Momentum simulator [24] for a set of 71 equispaced
frequencies X f ∈ [1, 4.5] GHz. In this example, the chosen
design parameters are the length of the vertical conductors
L ∈ [5, 25] mm and gap between them G ∈ [0.3, 1.2] mm.
Before executing the optimization, the desired filter response
needs to be specified. For this example, a bandpass behavior
in the interval [2.45, 2.55] GHz is imposed by the following
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specifications on the magnitude of the s21 coefficient:
|s21( p, f )| ≤ 0.01, for f < 2.45 GHz (10a)

|s21( p, f )| ≥ 0.708, for f ∈ [2.45, 2.55] GHz (10b)

|s21( p, f )| ≤ 0.01, for f > 2.55 GHz (10c)

where p = [G, L] is the vector of parameters, while f is
any frequency in X f . Note that 0.01 and 0.708 correspond to
−40 and −3 dB, respectively. Then, the goal function g( p, f )
can be defined as the distance between |s21| and the limit
values of the specifications

g( p, f ) = 0.01 − |s21( p, f )|, for f < 2.45 GHz (11a)

g( p, f ) = 10(|s21( p, f )| − 0.708)

for f ∈ [2.45, 2.55] GHz (11b)

g( p, f ) = 0.01 − |s21( p, f )|, for f > 2.55 GHz. (11c)

Using this definition, the value of g( p, f ) increases when
the magnitude of s21 is closer to one in the passband
[2.45, 2.55] GHz, and also when the magnitude of s21 is
closer to zero elsewhere. In particular, the weighting factor
10 in (11b) is introduced to assign higher importance to the
in-band response of the filter. Therefore, maximizing g( p, f )
at any simulated frequency means finding the values of the
magnitude of s21 that are closest to an ideal bandpass response.
While reaching an ideal response is not feasible, in practice,
this choice allows us to clearly illustrate the performance
of the proposed methodology. In practical usages, g can
be modified by the designer to individuate more realistic
responses, as shown in Section V. Indeed, the definition of
g can be changed according to the design specifications of the
problem at hand, as long as it satisfies (4).

Then, both the standard BO (see Section III-A) and the
new SMBO strategy (see Section III-B) are executed to find
the optimal s21 response using a GP and a DGP model,
respectively. In the former, the chosen objective function is

q( p) =
∑

f ∈X f

g(|s21( p, f )|, f ), for f ∈ X f . (12)

Instead, the objective probability distribution in the SMBO
is

q̂( p) =
∑

f ∈T f

g(DGP( p, f ), f ), for f ∈ T f (13)

where T f is a set of 36 equispaced test frequencies in the
range [1, 4.5] GHz. Note that, if both models are accurate, the
objective function prediction in BO should correspond to the
objective distribution prediction in SMBO

E[GP( p)] ∼ E[q̂(DGP( p, f ))]. (14)

This choice of q , g, and q̂ is not unique, but it enables
a consistent comparison of the two techniques. It is worth
noticing that these objectives do not impose constraints on the
optimization: the corresponding optimal S response may still
violate the initial design constraints.

Then, for both strategies, the upper confidence bound (UCB)
[25] is selected as the acquisition function, due to its simplicity
in interpretation. In addition, a squared exponential (SE)

covariance matrix, also called kernel, Wilson and Adams [26]
is used for both GP and DGP models. This covariance assumes
high local smoothness in the modeled function, which is
typical of S responses. In particular, the DGP architecture used
in this example for the SMBO is as follows: three stacked GP
layers, 50 inducing points at each layer, and the training is
executed with an Adam optimizer for 300 iterations and a
learning rate of 0.01. Similar to the ANN hyperparameters,
these settings are identified with a trial and error approach,
by testing the model on the initial samples.

A. Results and Discussion

BO and SMBO are executed for 30 iterations, starting
from five different sets of initial S responses, collected by
running ADS Momentum simulations on ten combinations
of the design parameters. These parameter values are chosen
randomly, according to a Latin hypercube design (LHD) [27].
This allows one to evaluate the robustness of the optimization
strategies to the choice of the initial samples. Based on
a validation set of 1000 (G, L) samples, which are also
chosen according to an LHD, it is found that the design
parameters corresponding to the highest objective value are
p∗ = [0.790, 18.678] mm.

To validate the performance of BO and SMBO, a large set
of simulations is performed in order to estimate the value
of the design parameters giving the best performance for
the problem at hand, indicated as p∗. In particular, a set of
1000 (G, L) samples chosen according to an LHD is evaluated
(referred to as validation set in the following), leading to
p∗ = [0.790, 18.678] mm.

Then, after each iteration of BO and SMBO, the normalized
regret is computed

regreti = || popt,i − p∗||
|| pH − pL || (15)

where i is the iteration index, popt,i are optimal parameters
predicted by the models, while pH and pL are vectors
containing the higher and the lower bounds of the parameter
ranges, respectively; ||·|| is the Euclidean norm. As a result,
the normalized regret in (15) ranges from 0 to 1. The previous
metric is averaged across five different runs of the strategy,
one for each set of initial samples. The resulting regret at
each iteration is reported in Fig. 5. In addition, Fig. 6 reports
the best among the simulated S responses, for each run of
the two strategies. These correspond to the highest objective
value found during each run. It is apparent that the two strate-
gies identify similar optimal responses, which are correctly
centered around the requested passband [2.45, 2.55] GHz.
Thus, the optimization results of SMBO are equivalent to the
standard BO for sufficiently simple objectives.

The previous observations are confirmed by Fig. 7, which
compares the prediction of the BO model of the objective func-
tion with the prediction of the objective distribution in SMBO,
after 30 iterations. In this figure, the black dots represent all
objective samples gathered during the optimization. Both BO
and SMBO focus the simulated samples near the maximum
(green dot), where they produce a similar prediction for the
objective values.
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Fig. 5. Application I: Regret for different optimization strategies over
increasing optimization iterations. Regret is computed for a validation set of
1000 |s21| responses and averaged across five complete runs, with different
initial samples. The shaded areas represent the range between the minimum
and maximum values recorded across the runs.

Fig. 6. Application I: Optimal S-responses identified with five different runs
of both optimization strategies, after 30 iterations.

Fig. 7. Application I. (a) Expectation of the objective function model in
the standard BO strategy using a GP. (b) The expectation of the objective
distribution in the proposed SMBO strategy using a DGP model. Black
dots represent all the simulated samples of design parameters during the
optimization, while the green dot corresponds to the true optimum p∗ =
[0.790, 18.678].

Further tests on the BO strategy show that substituting the
standard GP with SGP does not improve the identification of
the optimum in this application example. Hence, the results
obtained via SGP are not reported in Figs. 5–7, for simplicity.

It is important to remark that standard GPs could not be used
reliably as spectral models in the proposed SMBO. In fact, GPs
are not sufficiently powerful to reproduce the S responses over
the frequency. This often causes numerical errors in the kernel
matrix inversion, especially for high amount of training data.
As an illustration, Fig. 8 compares projections of a GP and
a DGP spectral model, trained on 50 p samples and 71 f
samples, with p chosen from an LHD design and f ∈ X f .

Fig. 8. Application I: Comparison of |s21| values predicted by GP (top)
and DGP (bottom) spectral models, in function of frequency and one design
parameter. The models are trained on 50 p ∈ X p samples and 71 f ∈ X f
frequencies. Blue dots represent the training samples (50 × 71).

Here, the GP is noticeably less accurate than the DGP in fitting
the data samples.

Finally, Table I reports the time needed for model train-
ing and the maximization of the UCB acquisition function,
recorded at the first and at the last iteration. The UCB maxi-
mization also includes the cost of inferring new values from
the surrogate models and computing the objective distribution
in the SMBO. Each value in the table is averaged across five
runs and does not include the simulation cost of the filter
response in ADS. Since all optimization methods are evaluated
for the same number of iterations and with the same simulation
settings (i.e., number of chosen frequency samples), the com-
putational cost of ADS Momentum simulations does not show
meaningful differences across all optimization strategies. This
table shows that both the training and the inference time for
the DGP is significantly higher than a simple GP. Moreover,
by comparing the BO with DGP and SMBO, it can be
observed that modeling the S coefficients over the frequency
further increases the computational cost of the iterations.
Therefore, the new SMBO strategy is more advantageous for
the optimization of devices with high simulation costs.

V. APPLICATION II: DUAL-BAND SLOT ANTENNA

In this section, the two optimization strategies are tested
on a dual-band slot antenna [28]. The top conductive layer of
this device (see Fig. 9) is deposited on a dielectric material of
permittivity ε = 3.5, loss tangent tan δ = 0.0009 and thickness
of 0.76 mm. For this DUT, three design parameters are chosen:
L1 ∈ [29.5, 40] mm, L2 ∈ [5, 12] mm, L3 ∈ [17, 25] mm. The
reflection scattering coefficient � of the DUT is computed via
ADS Momentum [24] for 50 equispaced frequencies X f =
[1.5, 6] GHz. Then, the following goal function g is applied
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TABLE I

COMPUTATIONAL TIMES IN SECONDS FOR APPLICATION I, RECORDED FOR EACH OPTIMIZATION STRATEGY

Fig. 9. Application II: Dual-band slot antenna (top view); the geometry is
symmetric with respect to the vertical axis.

Fig. 10. Application II: Optimal S-responses identified with five different
runs of both optimization strategies, after 30 iterations.

to search the desired dual-band behavior:
g( p, f ) = |�( p, f )| − 0.79, for f < 1.9 GHz (16a)

g( p, f ) = 0.18 − |�( p, f )|, for f ∈ [2.2, 2.7] GHz (16b)

g( p, f ) = |�( p, f )| − 0.79, for f ∈ [3.0, 4.0] GHz (16c)

g( p, f ) = 0.18 − |�( p, f )|, for f ∈ [4.3, 4.8] GHz (16d)

g( p, f ) = |�( p, f )| − 0.79, for f > 5.1 GHz (16e)

where 0.79 and 0.18 correspond to −2 and −15 dB, respec-
tively. This goal function returns higher value either when |�|
increases in the stop bands [1, 1, 9], [3, 4], and [4.3, 4.8] GHz,
and when |�| decreases in the pass bands [2.2, 2.7] and
[4.3, 4.8] GHz. Thus, higher values of g correspond to bet-
ter dual-band responses in the considered frequency range.
Compared to the previous application, this goal function
represents more realistic specifications for the DUT, thus
resulting in a more complex objective function q and objective
distribution q̂ .

Then, similar to the previous example, the BO and SMBO
strategies are executed for 30 iterations, for five different

sets of initial samples. The same settings of Application I
are used for both GP and DGP models. The best responses
found in each run of the strategies are reported in Fig. 10.
For reference, the |�| response corresponding to the best
parameters values p∗ is included (green curve). The best p∗ =
[34.25, 11.42, 22.41] is obtained from 1000 simulations of the
design parameters chosen according to LHD sampling. This
graph shows that the DGP solutions are closer to the actual
optimum. In addition, the average normalized regret 15 after
30 iterations is 0.34 for BO and 0.04 for SMBO. These results
indicate that, for this example, the BO using GP converges to
a suboptimal solution. On the contrary, the SMBO with DGP
is able to identify responses that are close to the best response
|�( p∗)|. Thus, this application illustrates the advantage of
SMBO when more complicated objectives are imposed on the
DUT.

VI. CONCLUSION

A new BO strategy based on DGP spectral models has been
presented for the optimization of microwave devices. This
SMBO strategy avoids the standard direct modeling of objec-
tive functions, thus overcoming the trade-off between good
optimization results and low objective function complexity.

First, a new spectral surrogate model is employed to model
the S coefficients as a function of the frequency and design
parameters. Second, an objective probability distribution is
derived from the model prediction and maximized using a
conventional BO scheme. The new SMBO strategy better iden-
tifies the optimal parameter values, compared to the standard
BO (based on the objective function modeling with GPs).

Note however that the increased modeling accuracy, flexi-
bility, and optimization performance come at a cost. In fact,
it requires a longer iteration time, which makes it more
beneficial for devices with a high simulation cost, or, in the
HITL optimization scenario, for problems where the initial
objectives might need some fine-tuning. Further studies are
necessary to extend the proposed strategy, first toward a joint
model of the S coefficient magnitude and phase, and later
toward the optimization of full S matrices.
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