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Abstract—Visible Light Positioning (VLP) is a promising indoor
localization technology for providing highly accurate positioning.
In this work, a VLP implementation is employed to estimate the
position of a vehicle in a room using the Received Signal Strength
(RSS) and fixed LED-based light transmitters. Classical VLP ap-
proaches use lateration or angulation based on a wireless prop-
agation model to obtain location estimations. However, previous
work has shown that machine learning models such as Gaussian
processes (GP) achieve better performance and are more robust
in general, particularly in presence of non-ideal environmental
conditions. As a downside, Machine Learning (ML) models require
a large collection of RSS samples, which can be time-consuming to
acquire. In this work, a sampling scheme based on active learning
(AL) is proposed to automate the vehicle motion and to accelerate
the data collection. The scheme is tested on experimental data from
a RSS-based VLP setup and compared with different settings to a
simple random sampling.

Index Terms—Visible Light Positioning (VLP), machine learning
(ML), Gaussian processes (GP), active learning (AL), adaptive
sampling.

I. INTRODUCTION

INDOOR localization technologies have become indispens-
able in the modern world [1]. Many applications in an indoor

setting benefit from or even require location awareness. The
need for indoor localization technologies arises from the fact
that Global Navigation Satellite Systems (GNSS) [1], which
are the prevalent technology in outdoor environments, cannot
provide accurate localization indoor due to signal attenuation
and multipath effects. Examples of use cases for indoor posi-
tioning systems can be found in consumer electronics, where
indoor navigation assistance and location-based advertising are
of interest. Further use cases present themselves in industry
where accurate indoor localization is of interest, amongst others,
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for asset tracking in manufacturing, preventing accidents and
indoor fleet monitoring. Due to the fact that indoor environments
are typically more complex when compared to outdoor settings,
there is currently no single prevalent technology for indoor
positioning. As a consequence, several competing technologies
exist which in turn are typically tailored for a specific set of use
cases. The most common ones that are discussed in literature [2],
[3] are based on Radio Frequency (RF) signals [4], [5], [6],
acoustic signals [7], [8], optical wireless-based signals [9] and
vision-based systems [10]. The typical signal features that are
used for positioning are the Received Signal Strength (RSS),
Time of Arrival (ToA) and Angle of Arrival (AoA). Based on
such features, the most common techniques that can provide
a location estimate are circular lateration, angulation, finger
printing and Machine Learning-based models.

Machine Learning (ML) methods have become an important
tool for improving indoor localization technologies. A major
benefit of ML is that it is data-driven and does not require
meticulous quantification of every parameter in the propagation
model to achieve accurate and robust positioning. ML has been
used in the context of indoor positioning using both supervised
and unsupervised methodologies [11], [12] for, amongst others,
NLOS-detection [13], feature extraction [14] and for directly
providing location estimates [15].

Due to the ubiquitous deployment of LEDs in indoor envi-
ronments and their favourable properties for providing wire-
less communication [16], optical wireless-based positioning
technologies have gained significant research interest. In the
context of optical wireless-based positioning, the solutions using
infrared light [17] and visible light [18] are commonly reported
in the literature.

The receiver hardware that is typically used for data acquisi-
tion are a single photodiode (PD), an array of PDs [19], a quad-
rant PD [20] equipped with an aperture to provide angular diver-
sity and a camera/image sensor [21]. In this work, a localization
approach using visible light is employed, which in literature
is more generally known as Visible Light Positioning (VLP). It
uses LEDs as transmitters, a single photodiode as receiver sensor
and it leverages the RSS as a feature for providing data-driven
positioning based on Gaussian process regression [22]. In recent
years, the interest for the application of ML in the context of
VLP has risen significantly. Previous work using ML mod-
els for positioning has shown that data-driven approaches can
drastically outperform classical multilateration-based methods
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which require a full description of the propagation model both in
terms of accuracy and robustness [23]. Furthermore, in non-ideal
light propagation scenarios, classical VLP techniques struggle
to provide accurate localization while ML approaches can easily
cope with these environments. The feasibility of VLP has also
been proved for 3-D position estimation, using either classical
multilateration methods [24] or ML models [25].

In the literature on VLP, ML techniques such as Artificial
Neural Networks (ANN) [26], Gaussian Processes [27], Sup-
port Vector Machines (SVM) [28] and K-Nearest Neighbours
(KNN) [29] have already been employed to improve localization
accuracy and robustness. In previous related work, the focus pre-
dominantly has been on model selection and data efficiency in or-
der to achieve the best possible localization performance. Other
papers have been focusing on possible optimizations in data-
driven VLP approaches, using for example simulation-based
data or interpolation to augment available dataset and describe
methods on how to scale the ML approaches to large setups
[30], [31]. However, these approaches only aim at reducing the
number of samples, without directly optimizing the trajectory
of the receiver. Moreover, a very important aspect that is not yet
sufficiently investigated, is how to efficiently acquire a training
dataset in the offline phase of ML-based approaches and how to
guarantee that the acquired dataset is representative for the setup
where localization is to be deployed. This work addresses this
problem and offers the following original contributions. First,
a new Bayesian active learning [32] scheme is proposed, using
two stochastic ML models: one model drives the vehicle towards
the positions where the RSS values are most uncertain, while
the other model provides the position estimation using the RSS
samples collected along the way. Second, two different position
estimation techniques are analysed and compared. Third, a line-
based sampling strategy is introduced to enhance the efficiency
of the Bayesian scheme: multiple samples are collected along the
linear motion of the vehicle, between two consecutive positions
of interest. This strategy allows for a greater estimation accuracy,
for the same distance travelled by the vehicle.

The rest of the paper is organized as follows. Section II
formally states the problem of defining a sampling strategy
in RSS-based VLP setting and it provides an overview of
typical sampling strategies. In Section III, the new Bayesian
AL methodology is described in detail and its main functional
blocks are analysed. Next, Section IV reports the results of the
new strategy, when tested on RSS data collected in a suitable
experimental setup. The strategy is also compared with different
settings against a simple random sampling. Finally, conclusions
are drawn in Section V.

II. PROBLEM STATEMENT

In the typical RSS-based problem setting, the vector of the
received signal strength i, hereby denoted as intensity values, is
dependent from the position x of the receiver. This dependency
can be represented by a direct mapping f :

i = f(x), f : U ⊆ RNp → RNi (1)

whereNi is the number of light transmitters andNp = 2 in a 2-D
reference system. The goal of the RSS-based VLP is to estimate
the position x given the intensity values i. In other words, the
goal is to identify an inverse mapping g:

x = g(i), g : V ⊆ RNi → RNp (2)

Note that inverse mapping g exists only if the direct mapping f
is bijective in the domain of possible positions U .

In the classical RSS multilateration scheme, the inverse map-
ping is analytically obtained as the solution of a non-linear
system of equations. Then, the system can be solved with a
least squares optimization [33], for each possible i. Instead, ML
techniques can provide an approximate inverse model ĝ ∼ g that
estimates the position for any vector of intensities. The position
estimation via a ML model is convenient when the defining
analytical relations between i and x are infeasible and require
heuristics to be exactly quantified, due to the high complexity
of the VLP environment.

The main drawback of ML models is the necessity of a suffi-
ciently large set of measured samples S = {is,xs}Ns=1, which
can be time-consuming to collect. In fact, in the VLP setting,
the receiver must perform a physical movement through space
in order to measure intensity samples at different positions. Fur-
thermore, collecting samples without an appropriate sampling
strategy may lead to insufficient performance in locations where
the setup does not provide a reliable RSS coverage. Fortunately,
a sampling strategy can be design such that the accuracy of the
inverse model ĝ is maximized, while limiting the time spent to
move the receiver.

A. Sampling Strategies

The main task of the sampling strategy, known as exploration,
is to select positions x that are sufficiently spread, in order to
maximize the modelling accuracy in the whole domain. Explo-
ration can be easily performed with simple one-shot strategies
such as random search, grid search (or boustrophedon [34]), or
latin hypercube design [35]. One shot-strategies select a fixed
number or samples that are spread in the domain, based on
geometrical criteria. They allow to rapidly identify the sampling
positions before any measurement is executed. However, they
require a good prior estimate on the number of sample to draw:
scarce samples would produce inaccurate models (undersam-
pling), while excessive samples would need long measurement
times and provide little additional information (oversampling).
Consequently, one-shot strategies typically need to be adapted
to the problem setting with several trials.

A more efficient way to select sampling positions is via
active learning (AL), also known as adaptive sampling [32].
Using AL, a stochastic ML model can be trained to predict the
intensity values and their confidence interval, for any position
that is not yet sampled. Then, by interrogating the stochastic
model, it is possible to sequentially choose new positions x that
mostly reduce the model uncertainty about the intensity i. In
the considered VLP setup, such AL task can be performed by a
stochastic extension of the direct mapping f . In fact, the direct
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mapping already provides the intensity values for any position
of the receiver.

The next Section presents a new strategy to obtain an accurate
inverse model ĝ by collecting samples using AL on a model of
the direct mapping f̂ ∼ f . This strategy is based on the following
assumption: samples that reduce the uncertainty of the f̂ are also
beneficial to improve the inverse model ĝ.

III. METHODOLOGY

The previous Section introduced two models of the relation
between positions and intensities in a RSS-based VLP setup.
One is the inverse model ĝ, that performs the position estimation
task, given the intensities measured by the receiver. The other is
the direct model f̂ that allows to define an AL sampling strategy
in the space of positions. In this work, the Gaussian process
(GP) [22] is proposed for both direct and the inverse model.

A. Gaussian Processes

The Gaussian process provides a stochastic representation
of an observed function, given a set of data samples. In fact,
the GP assumes that each function sample is a realization of a
random variable, obeying to a prior Gaussian distribution. In
addition, the correlation among the input samples is represented
by a user-defined covariance function, also known as kernel.
Subsequently, the GP allows to compute a posterior probability
distribution for the function value at any input sample that is not
yet observed. The posterior is also Gaussian and can be obtained
analytically via Bayesian inference [22]. In other words, for each
new input sample, the GP returns an expectation value and a
confidence interval, which are represented by the mean and the
variance of the posterior, respectively.

The main advantage of the GP is that is non-parametric:
unlike ANN and other popular ML models, it does not require
trainable parameters to represent the observed function; instead
the GP model stores the mutual information between any pair of
input samples, in the form of a covariance matrix. Consequently,
the GP is highly accurate and computationally cheap with low
amount of data samples. These properties allow the GP to
efficiently perform active learning tasks, when the modelled
function is defined over low-dimensional spaces.

In RSS-based VLP, the GP has demonstrated high accuracy
in the inverse modeling, and high robustness to the degradation
of the receiver’s sensor [15]. Thus, in this contribution, the GP
is also applied to model the direct mapping f̂ for the selection
of sampling positions.

B. Active Learning

Based on the Gaussian process model of f̂ , the active learning
scheme in Fig. 1 is considered. First, few initial samples are
collected by moving the receiver and measuring the emitter’s
intensity until the position xN0

is reached. Second, a direct GP
model is trained to predict the intensity values for any position.
At this point, the algorithm ends if a stop condition is met.
Otherwise, an acquisition function α(x) assigns an importance
score to any position, based on the prediction of the direct GP

Fig. 1. Active learning scheme based on the Gaussian process model of the
direct mapping f .

model. Then, the receiver is commanded to move towards the
position xN0+ns

that maximizes the acquisition function:

xN0+ns
= argmax

x∈U
[α(x)] (3)

Along the receiver trajectory, new intensity samples are collected
at the positions [xN0+1, . . .xN0+ns

] and added to the initial set.
Then, the direct GP model is updated with the new data. This
iteration is repeated until the stop condition is met.

C. Inverse Modeling Methods

At each iteration of the described AL scheme, the inverse
model ĝ can be build to predict any new positions, based on
the samples collected so far. A second GP is proposed for this
task: ĝ = E[GP (i)]. In fact, as shown in [15], the GP has been
successfully used as inverse model in RSS-based VLP.

A more simple method to obtain inverse modeling predictions
is to perform a Monte Carlo sampling over the direct model. This
method is referred to as direct random search (DRS) further on.
The first step of DRS is to compute the f̂ prediction for many
random query positionsUT ; second, the predicted intensities are
compared to the receiver’s current measure. Then, the estimated
position is approximately the position for which the predicted
intensities are closer to the measured values. In other words, the
inverse modelling task can be executed as:

ĝ(i) ∼ arg min
x∈UT

|f̂(x)− i| (4)

where | · | is the Euclidean distance. Note that a GP is used as
direct model: f̂(x) = E[GP (x)].

This inverse prediction approach has already been employed
in [36] to define an acquisition function in an inverse problem
setting. However, in [36] the active learning strategy aims at
finding the best inverse solution to only one observation, rather
than training an inverse model for the whole observable domain.

The advantage of the DRS method is that it does not require
the training of an additional model. However, the direct model
has to be interrogated for a large number of positions, which
need to be carefully chosen to avoid excessive computational
cost. Moreover, in contrast with the inverse GP model, it does
not provide a confidence interval for the estimated positions.
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Fig. 2. A photo of the experimental setup with which the measurements have
been conducted. The green arrows indicate the placement of four of the LED
transmitters, mounted on wooden beams. The green patch indicatively marks
the sampling domain of the proposed strategy.

D. Line-Based Sampling

In the considered AL scheme, the choice of the acquisition
function is crucial to measure at positions that are most signif-
icant for the direct GP model. In this work the variance of the
direct model is chosen: α(x) = V ar[GP (x)]. Consequently,
after each iteration, the receiver reaches the position for which
the direct model presents the highest variance. In other words,
the receiver measures the positions where the direct model is
most uncertain about the intensity values. Hence, this strategy
is named maximum variance sampling.

By default, the maximum variance sampling only identifies
one position to be reached by the receiver. Additional positions
are sampled by extending the maximum variance to a line-
based sampling. In line-based sampling, at each active learning
iteration, the intensity is measured at intermediate positions
[xN0+1, . . .xN0+ns−1], between the current and the final posi-
tion of the receiver, which is selected by the maximum variance
of f̂ . The intermediate positions are chosen on straight line, with
constant step size d:

d = |xj+1 − xj |, j = N0, . . . , N0 + ns − 1 (5)

This strategy allow to increase the number of collected samples,
while keeping the same total travel distance.

IV. APPLICATION EXAMPLE

A. Experimental Setup

The proposed active learning strategy is applied in an exper-
imental VLP constellation. The setup was built in an industrial
logistics test environment, pictured in Fig. 2, which in total spans
6 m x 4 m where four LED-based transmitters are installed on
the ceiling at a height of 5.71 m above the plane in which the
receiver moves. The transmitters are installed in a rectangular
pattern and provide VLP coverage for the entire area. However,
for the evaluation of the sampling strategies in this work, only a

Fig. 3. Receiver’s trajectory during the collection of experimental data. Blue
points represents the measured samples, while the green area is the domain
where the sampling strategies are subsequently simulated.

subset of the area spanned by the four LEDs in the center of the
setup was considered. The setup is described in detail in [37].

In order to test the different sampling strategies, a dataset
of positions and RSS values is collected by manually moving
the receiver across the room (Fig. 3). Along the receiver’s
trajectory, 31511 RSS-positions pairs are measured. The ground
truth position of the receiver is measured by a high-accuracy
LIDAR localization system, while RSS values are measured as
the absolute intensity of the light on the receiver’s sensor. The
LIDAR localization system, which have been also employed
in [37], guarantees a positioning precision of ±0.02m.

Subsequently, the simulation of any sampling strategy can be
performed by extracting intensity values at the desired positions
via Delaunay interpolation over the experimental dataset. For
simplicity, the simulation is confined to a rectangular patch of
4 m × 3.5 m in the room, represented by the green patch in
Fig. 3. In addition, a validation set {(it,xt)}Nt

t=1 is obtained by
interpolating the collected samples over a grid of Nt = 50× 50
sampling positions in the rectangular patch. Fig. 4 represents the
validation set intensity values across the positions, for each light
emitter.

Using the same collected data, the strategies can be con-
sistently evaluated, without being affected by time-dependent
variations of the environment. The sampling strategies are also
examined using RSS in form of relative intensity irel, according
to the following definitions:

irel : in,rel =
in

max
n

{in} , n = 1, . . . , Ni (6a)

where i is the measured intensity n is the emitter index. Note
that irel values are scaled in the range [0,1].

Subsequently, the active learning scheme in Fig. 1 is tested.
First, an initial sample is drawn for a random position of the
receiver inside the room. Next, for 30 iterations, the receiver is
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Fig. 4. Ground truth intensity values for the validation of sampling strategies, for each light emitter [i1, . . . i4] across the positions.

moved at positions indicated by the sampling strategy, where
the new intensity samples are collected. The proposed scheme
is executed using the maximum variance strategy and line-based
strategy, as described in Section III-D. For reference purpose, a
random sampling strategy is also tested: the direct GP and the
inverse modelling methods are updated progressively, drawing
intensity samples at random positions. These evaluations are
performed by using a squared exponential kernel [38] for the GP
models and 2048 random query positions for the DRS method.
Furthermore, a default step size d = 0.5m is chosen for the
line-based strategy.

B. Results and Discussion

A first verification of the basic assumption of the proposed
AL scheme is performed: the best samples for the direct model
also improve the accuracy of the inverse model. For this purpose,
the mean relative error (MRE) and the maximum absolute error
(MAE) are computed at each iteration between the models’ pre-
diction and validation samples, for different sampling strategies:

MREk =
∑

t

1

Nt
· |ĝk(it)− xt|

|xt| (7)

MAEk = max
t

|ĝk(it)− xt| (8)

where xt, it are the test data samples, | · | is the 2-D Euclidean
norm and ĝk is the inverse model prediction at the k-th iteration.
Then, the MRE values are averaged across 10 runs, for different
starting positions, and reported in Fig. 5. Here, it is evident that
when the absolute intensities are used (Fig. 5(a)) both the direct
GP model and the DRS method gradually improve, while the
inverse GP model is highly inaccurate for many iterations. On the
contrary, by using relative intensities (Fig. 5(b)–(d)), the direct
GP and the inverse modeling methods improve simultaneously,
for any sampling strategy. A possible explanation for this result
is the following: using the absolute intensity, samples may be
too close in the input space of the inverse GP model; this can
cause numerical errors in the GP, due to kernel matrix inversion.

Next, the cumulative density function (CDF) of the position
error is evaluated on the validation set after a 40-meters travel
of the receiver, for all the sampling strategies and for both the
inverse modeling methods. The obtained CDFs are shown in
Fig. 6. The Figure indicates that the best positioning accuracy
is reached using the line-based sampling and the GP as inverse

Fig. 5. Mean relative error (MRE) between the models’ prediction and the
ground truth values for different sampling strategies. Shaded areas indicate the
variability of the MRE across 10 execution, for different starting positions.



8559208 IEEE PHOTONICS JOURNAL, VOL. 14, NO. 6, DECEMBER 2022

Fig. 6. Cumulative density function of position error on the validation set
after a 40-meters travel, for different sampling strategy and inverse modeling
methods, using relative intensity values.

TABLE I
INVERSE MODEL ERROR METRICS AMONG DIFFERENT SAMPLING STRATEGIES.

THE VALUES ARE RECORDED AFTER A 40-METERS TRAVEL AND THEY ARE

AVERAGED ACROSS 10 RUNS FOR DIFFERENT STARTING POSITIONS

model. Therefore, the line-based sampling appears to be the
most efficient method with respect to the total travel distance.
Table I reports the p50 and p95 values of CDF, together with
the defined MRE and MAE metrics, for the examined sampling
strategies and inverse models. Interestingly, the positioning
error using the line-based sampling is lower than 0.10 m for
95% of the test samples. Moreover, the DRS method appears
significantly less accurate than the inverse GP model, for any
strategy.

In addition, Fig. 7 analyses the position error in the line-based
strategy, for different step sizes. It is apparent the improvement
of the inverse GP model is gradual, but marginal for a step size
smaller than 1 m. Note that small steps correspond to a high
number of new samples at each iterations; since the GP model
complexity grows asO(n3)with the number of training samples,
smaller step sizes may require different modeling techniques in
order to avoid excessive computational costs. The effect of the
step size can also be evaluated in a typical positions scanning
over an orthogonal grid, also known as boustrophedon [34].
For this purpose, the inverse GP model has been trained on a
grid of points with different step sizes. Then, the p95 error is
plotted in Fig. 8 against the step size, for both the grid points
and the line-based samples. Note that for a fair comparison, the
line-based sampling is stopped when reaching the same travel
distance of a complete grid with same step size. Fig. 8 shows that

Fig. 7. Cumulative density function of position error on the validation set, for
the line-based strategy and inverse GP model with step size d, after 30 iterations,
using relative intensity.

Fig. 8. P95 error of inverse GP models (relative intensity) with respect to the
step sizes, for the line-based sampling and a grid sampling (boustrophedon).
Line-based sampling are terminated when reaching the travel distance of a
corresponding complete grid.

the line-based sampling consistently produces more accurate
inverse models than grid sampling. For illustration purpose, an
example of receiver trajectory for different sampling strategies
is provided in Fig. 9. This figure also shows the intensity of
the first emitter predicted by the direct model, after collecting
30 samples (red dots). It can be observed the the maximum
variance sampling produces a more uniform coverage of the
position space. However, the line-based sampling produces a
more regular trajectory using the same number of samples.

Finally, in order to corroborate the choice of Gaussian pro-
cesses in the proposed line-based sampling strategy, other ma-
chine learning techniques are tested as inverse models. This
analysis is performed by simply swapping the Inverse GP model
in the AL scheme (Fig. 1) with other models, namely ANN [26],
SVM [28], KNN [29] and Gradient-boosted Trees (GBT) [39].
The results are reported in Table II, from which the GP emerges
as the most accurate inverse modeling technique, confirming the
findings in [15].
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Fig. 9. Relative intensity of the first emitter as predicted by the direct GP model, for different sampling strategies, after collecting 30 samples (red dots). Orange
segments show the trajectory of the receiver.

TABLE II
COMPARISON AMONG ML TECHNIQUES FOR INVERSE MODELING TASK IN THE PROPOSED LINE-BASED SAMPLING STRATEGY. THE MODELS ARE TRAINED ON THE

SAME DATA SAMPLES AFTER 30 ITERATIONS OF LINE-BASED SAMPLING; THE METRICS ARE AVERAGED AMONG 10 RUNS WITH DIFFERENT STARTING POSITIONS

V. CONCLUSION

In this work, a new active learning strategy has been applied in
a RSS-based Visible Light Positioning setting. The AL strategy
employs a direct GP model that select the most interesting posi-
tions to be measured, based on the maximum variance approach.
Subsequently, an inverse GP model is trained to predict the
position of the moving receiver given the measured intensity
values, using the previously collected samples. In this method,
expressing the collected samples in the form of relative intensity
values prevents numerical instabilities in the inverse GP model.
In addition, the efficiency of the sampling strategy is enhanced
by collecting multiple samples on a straight line between the
indicated positions. The resulting line-based approach outper-
forms the random sampling strategy and the basic maximum
variance sampling. After 30 iterations, the inverse GP model is
able to estimate the position with an error lower than 0.1 m in
95% of the space, while the maximum recorded error is smaller
than 0.2 m. Further research is needed to assess the robustness of
the technique to different environmental conditions, such as light
noise, sensor degradation and obstacles between the receiver and
the transmitters.
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