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a b s t r a c t

Non-Intrusive Load Monitoring (NILM) can be used to detect, recognize, and classify switching events of
individual electrical appliances from an aggregate power signal that is measured at the main line of the
grid connection. A limitation of existing solutions is that deep learning models tend to overfit the data
and do not express their uncertainty when making predictions. This paper shows that uncertainty infor-
mation can be obtained in a natural way by making use of Bayesian Neural Networks. Having this infor-
mation is very valuable, because it supplies relevant information about potential misclassifications of the
model to an end-user. The source of these misclassifications can be attributed to ambiguous data, or the
model requiring more examples to learn from. In this work, an increase in generalization performance is
observed whenmaking use of Stochastic Gradient Hamiltonian Monte Carlo over Stochastic Gradient des-
cent, and the usefulness of uncertainty in a NILM context is discussed.

� 2022 Elsevier B.V. All rights reserved.
1. Introduction

In the past years, several advanced classification models for
NILM have been proposed to identify individual electrical appli-
ances from a measured, aggregate power signal (a.k.a. appliance
identification) [1–10]. This leads to a higher cost-effectivity as
compared to installing a single meter for every appliance or socket
in a household.

The introduction of Deep Learning techniques has improved the
accuracy of appliance identification. However, NILM often deals
with non-stationary conditions. New appliances are connected,
more complex appliances may exhibit unseen behaviors, and sen-
sor quality may degrade over time, which are all sources of concept
drift. As a consequence, these state-of-the-art deep learning tech-
niques may misclassify certain events without having the ability
to express their uncertainty.

This work shows that Bayesian Neural Networks (BNNs) are able
to quantify different types of uncertainty, on which the developer
of a NILM system may put a threshold, signifying the user of the
system of a likely misclassified event, as well as providing informa-
tion on the root cause of misclassification. The method is validated
on the VI trajectories [11] of all appliances in the PLAID [1] bench-
mark dataset. Additionally, an increase in accuracy is observed by
using Bayesian techniques, as they have an inherent regularizing
behaviour.

2. Types of uncertainty

Uncertainty of a prediction consists of two major components:
the epistemic uncertainty ue and the aleatoric uncertainty ua [12].
The epistemic uncertainty encodes ‘‘how many” different parame-
ter weights h of a model fit the dataset D optimally. Aleatoric
uncertainty refers to the amount of inherent uncertainty in the
data.

Epistemic Uncertainty The epistemic uncertainty ue displayed
by a model parameterized by h and trained on dataset D is mea-
sured by the posterior probability distribution:
pðhjDÞ / pðDjhÞpðhÞ, as derived from Bayes’ Rule. This posterior
distribution exhibits high entropy if a model was not trained on
enough data to explain the observation. This type of uncertainty
is therefore also referred to as reducible, as more training data
reduces this uncertainty. A concrete example for Appliance
Identification would be as follows: say a classifier has been
trained on a given dataset D. If a new appliance is introduced,
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or an existing appliance exhibits never before seen behavior,
the epistemic uncertainty would generally be high, as multiple
parameterizations of the model fit the novel observation
equally well (or rather equally bad).
Aleatoric Uncertainty The aleatoric uncertainty ua expressed by
a model is encoded in the conditional distribution of a class,
given an input and a set of weights: pðyjx; hÞ. This describes
the inherent noise present in the data and cannot be explained
away by introducing more data. The aleatoric uncertainty typi-
cally rises when a model learns that some VI trajectories are
inherently hard to classify (to its own ability). In this case, the
epistemic uncertainty can be low, signifying many parameteri-
zations leading to the same result, but with high aleatoric
uncertainty. In other words, there is certainty of inherent ambi-
guities in the data in this case.
Predictive Uncertainty The predictive uncertainty is the sum of
the epistemic and aleatoric uncertainty upðxÞ ¼ ueðxÞ þ uaðxÞ.
This describes the total uncertainty present when making a pre-
diction on a certain input, accounting for both the uncertainty
the model has of its parameters, and the inherent ambiguity
present in the data.

It must be noted that epistemic and aleatoric uncertainty are
not absolute notions. For small, simple models — such as linear
or logistic regression — epistemic uncertainty might be low, but
aleatoric uncertainty high. This may be the case when the simple
model has no better parametrization fitting the given dataset D
[12].

A common way of quantifying the uncertainty of the distribu-
tions that encode the epistemic and aleatoric uncertainties, is to
sample the distribution and calculate its entropy:

H½pðxÞ� ¼ �
X
x2X

pðxÞlog2pðxÞ: ð1Þ

Eq. (1) describes how ‘‘surprising” the distribution pðxÞ is. When
dealing with ensembles, low (high) values of entropy indicate a
high (low) agreement between different parameterizations hn.

3. Methodology - Stochastic Gradient Hamiltonian Monte Carlo

The parameters of a Bayesian Neural Networks (BNN) are not
point estimates, but rather a probability distribution pðhjDÞ. The
entropy of the resulting predictions is a measure of the model
uncertainty, or epistemic uncertainty. The method used to obtain
a BNN is Hamiltonian Monte Carlo (HMC) [13,14], considered to
be the gold standard to approximate [15] a predictive posterior
distribution.

Hamiltonian Monte Carlo (HMC) is a Metropolis–Hastings Mar-
kov Chain Monte Carlo (MH-MCMC) [16] technique based on the
idea of Hamiltonian Dynamics. MCMC is a class of algorithms to
sample from probability distributions. Starting from a random
guess of parameter values h, MH-MCMC walks to another point
in the parameter space h0 that, given a loss function, is more likely
than the previous parameters h. All the parameters h that are vis-
ited are stored, and approximate the distribution of possible
parameters. As a result, the output predictions also become distri-
butions. A step-by-step overview of MH-MCMC techniques is as
follows:

1. Start with a random initial guess h1

2. Sample a candidate around the last one h0 � Qðh0jhnÞ. This could
be a simple distribution, such as Qðh0jhnÞ ¼ N ðhn;r2IÞ.

3. If this is a more likely sample from the distribution we want to
sample from than the previous one, choose this sample with a

Bernoulli probability p ¼ min 1; Qðh0jhnÞ
Qðhn jh0Þ

pðh0jDÞ
pðhn jDÞ

� �
. The posterior dis-
2

tribution pðhjDÞ is often approximated in Deep Learning using
the log-likelihood function.

Given sufficient time, the history of this Markov chain becomes
an approximation of the target distribution pðhjDÞ. As n approaches
infinity, the average of the model output

f̂ ðxÞ ¼ 1
N

XN
n¼1

f ðx; hnÞ ð2Þ

converges to the true expectation

lim
n!1

f̂ ðxÞ ¼ E½f ðxÞ�: ð3Þ

In practice, this set of parameters constitutes an ensemble of
neural networks with the same architecture but different weights,
each producing different predictions. These individual networks
may be biased to certain portions of the training data, but as an
ensemble are able to make accurate and well-calibrated
predictions.

In the ordinary MH-MCMC algorithm stated above, the pro-
posed weights are sampled directly from the proposal density.
HMC modifies the regular MH-MCMC by introducing two compo-
nents: a random momentum vector x and the Hamiltonian
dynamics of the system. Betancourt [17] elaborates on this concept
and provides the proper intuition of Hamiltonian Monte Carlo.

A further extension used in this work is Stochastic Gradient
Hamiltonian Monte Carlo (SGHMC) [18] that uses Hamiltonian
dynamics to improve convergence [13]. This method solves the
infeasible calculation of a required gradient computation when
simulating a Hamiltonian dynamical system with a large sample
size, which is common in deep learning. SGHMC uses minibatches
of data as a noisy estimate of the gradient of the entire dataset. This
results in a method which has a correspondence to stochastic gra-
dient descent with momentum, but with the added benefit that
uncertainties can be calculated on the parameters resulting from
evaluation of this technique.

The total predictive uncertainty of an ensemble is found by
averaging the predictions of the ensemble, and calculating the
resulting entropy [12]:

upðxÞ ¼ �
X
y2Y

1
N

XN
i¼1

pðyjhi;xÞ
 !

log2
1
N

XN
i¼1

pðyjhi; xÞ
 !

: ð4Þ

The resulting uncertainty estimate upðxÞ also includes the epis-
temic uncertainty about the network weights h. Fixing a single set
of weights removes this uncertainty. Therefore, the expectation
over the entropies of these distributions for an ensemble model

uaðxÞ ¼ � 1
N

XN
i¼1

X
y2Y

pðyjhi; xÞlog2pðyjhi;xÞ: ð5Þ

is a measure of aleatoric uncertainty.
Finally, the epistemic uncertainty is simply calculated as the

difference

ueðxÞ ¼ upðxÞ � uaðxÞ: ð6Þ
4. Application – NILM

The methodology is applied to the PLAID dataset [19,1] where
an increase of generalization performance is observed. Addition-
ally, a qualitative analysis of aleatoric and epistemic uncertainty
is applied to the dataset, showcasing the the use and usefulness
for these quantities.



Fig. 1. A visualisation of aleatoric uncertainty in NILM. Top: VI trajectory of example data point (Hairdryer), and means of VI trajectories of the Hairdryer and Heater classes.
Bottom: boxplot of class probability outputs over all parametrizations hi .

Fig. 2. A visualisation of epistemic uncertainty in NILM. Top: VI trajectory of example data point (Fridge), and means of VI trajectories of the Air conditioner and Microwave
classes. Bottom: boxplot of class probability outputs over all parametrizations hi .
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4.1. Dataset

PLAID [19,1] is a public dataset including sub-metered voltage
(V) and current (I) measurements sampled at 30 kHz for 11 differ-
ent appliance types. More than 200 individual appliances are avail-
able, captured in 55 households. For each appliance, at least 5
start-up events are measured, resulting in a total of 1074 measure-
3

ments. The time series are transformed into VI trajectories as fol-
lows [2,11]: First, a transient in the current needs to be located
at time t, signifying an on-event. Then, making use of the corre-
sponding AC voltage time series, 20 cycles are skipped to allow
for the current to fall into a steady state at time t0. From then
onwards, both current and voltage are graphed so the voltage is
on the x-axis and the current on the y-axis for C cycles. The result-
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ing graph is then discretized by assigning bins at regular intervals
in the x and y axes and counting the amount of occurences of a
ðV ; IÞ pair in a given bin.

The following tests are performed using a leave-one-house-out
cross-validation. This means per fold a house is left out for the test
set, and the remaining houses are split into train and validation
sets.

4.2. Training of the Neural Network

The neural network architecture of De Baets et al. [2] is modi-
fied to compare Stochastic Gradient Descent (SGD) and HMC. The
basic structure is as follows: it takes as input a 50� 50 VI trajec-
tory, normalized to contain values between 0 and 1. Next, a convo-
lutional layer with 20 filters of size 5, a pooling layer, another
convolutional layer with 20 filters of size 5, another pooling layer,
a layer which flattens the resulting features and an output layer
with K nodes are added, where K denotes the amount of classes
available in a given training set. The original model used a larger
amount of filters and a hidden layer before the final layer, but
due to computational restrictions a smaller version of this model
was constructed.

First, the baseline neural network is trained with the Adam
optimizer [20], a modified SGD which generally yields better
results without heavy fine-tuning.

Next, the SGHMCmethod is sampled 250 times, while throwing
away the first 50 samples (burn-in period) and only retaining every
second model afterwards (thinning out). This results in 100
remaining parametrizations.

4.3. Improvement in accuracy

First, an improvement in accuracy is noted. In the leave-one-
house-out setup, the weighted F1-score of the network trained
with SGD is 0.713, while that of the network trained with SGHMC
is 0.730. This is expected, as BNNs are naturally regularizing [21],
with SGHMC having a connection with SGD with momentum, a
common regularization method [18]. Conceptually, the Bayesian
methods converge to the posterior probability distribution pðhjDÞ,
while a regular deterministic model would only be one sample
out of these possible parameters h. As a result, the BNN stores more
information, and can be seen as an ensemble method, which often
performs better than an analogous non-ensemble method [22].

4.4. Aleatoric uncertainty

Fig. 1 shows an example of aleatoric uncertainty arising for a
given input. This sample is chosen as the one where the aleatoric
uncertainty is dominant and takes on the highest value. This data
point belongs to the Hairdryer class. The two classes that are most
prominently visible in the output distribution are Hairdryer and
Heater. Intuitively, this aligns with the expected resistive beha-
viour, as both devices contain similar electric components such
as a heating element. The mean VI trajectories of the two most
probable classes also imply there is a similarity between the VI tra-
jectories visually. As expected, high aleatoric uncertainty arises
when there are ambiguities in the data that are inherently difficult
to discriminate.

4.5. Epistemic uncertainty

Fig. 2 shows an example of epistemic uncertainty arising for a
given input. This sample is chosen as the one where the epistemic
uncertainty is dominant and takes on the highest value. This data
point belongs to the Fridge class. Here a clear confusion is seen
between multiple classes, with Air Conditioner and Microwave
4

being the most prominent. The distribution of classes this time
contains many outliers, and no clear majority can be found
between the different parametrizations of the model. This implies
the input (Fridge VI trajectory) is not properly represented in the
training data, and therefore requires more examples to reduce
the error.

In Figs. 3 and 4 in the work by De Baets et al. [2], it turns out
that the fridge is one of the appliances with lowest F1-measure
and is most often confused with other appliances. This appliance
type is also one of the least occurring in the specific fold high-
lighted in Fig. 2, only accounting for 53 of 1348 samples, or
4.38% of the training data.
5. Conclusion

The potential of uncertainty quantification and Bayesian Neural
Networks is showcased in NILM by providing possible root cause
identification of misclassifications to the end-user in the forms of
epistemic, aleatoric and predictive uncertainty. The capability of
uncertainty quantification for detecting potentially misclassified
predictions is demonstrated by making use of Stochastic Gradient
Hamiltonian Monte Carlo. This Bayesian Neural Network technique
improves the weighted F1-score of the appliance identification task
to 0.730, compared to 0.713 with the same baseline model. This
indicates a better generalization and avoidance of overfitting.
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