
S P E C I A L I S S U E P A P E R

Statistical modeling of frequency responses using linear
Bayesian vector fitting

Simon De Ridder | Dirk Deschrijver | Domenico Spina |

Dries Vande Ginste | Tom Dhaene

IDLab, Department of Information
Technology, Ghent University – IMEC,
Ghent, Belgium

Correspondence
Simon De Ridder, IDLab, Department of
Information Technology, Ghent
University – IMEC, Ghent, Belgium.
Email: simon.deridder@edpnet.be

Abstract

This article presents a Bayesian extension of the vector fitting (VF) procedure

for rational approximation of frequency-domain responses. The proposed

method treats the linear part of VF in a Bayesian way, while propagating dis-

tributions through the nonlinear part by sampling. As such, it is capable of

providing data-driven uncertainty information along with the rational fit. The

Bayesian VF technique is applied to two realistic design examples, a double

folded stub filter and a RAM memory channel, demonstrating its validity and

highlighting three potential applications of this novel framework.
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1 | INTRODUCTION

Black-box macromodeling is a popular tool to approximate the dynamic behavior of complex systems in terms of low
complexity models. The most accomplished approaches to black-box macromodeling are the Löwner matrix method,1,2

and the vector fitting (VF) algorithm.3-6 By virtue of its robustness and modeling power, several macromodeling tech-
niques based on the VF algorithm have been developed in recent years, in order to characterize the behavior of distrib-
uted elements.7-9

As any measurement of an electronic device is affected by a modicum of noise, and due to discrete sampling of the
frequency response, macromodels are subject to model uncertainty. Most macromodeling techniques, including VF,
however, consist of a deterministic interpolation of the response, based on those samples. These models display no mea-
sure of model uncertainty with regard to the value of their interpolation. A statistical treatment of these methods would
be an efficient means to assess this model uncertainty.

In this article, such a statistical treatment is presented, based on Bayesian linear regression combined with
sampling-based propagation of model uncertainty. Two insightful examples demonstrate that the novel Bayesian ver-
sion of VF gives sharp bounds of the model uncertainty. With the aid of these examples, it is shown that such uncer-
tainty information can be used for various purposes, such as characterizing device responses in the presence of noisy or
missing data, to verify functionality and compliance, or for adaptive sampling. Note that in Reference 10, the idea of
using Bayesian VF for adaptive sampling was introduced first, but only for a simple one-port example of an antenna. In
this work, the linear Bayesian vector fitting (LB-VF) framework is fully developed and tested on two multiport systems
(a microwave filter and a RAM memory channel) for various applications.

The remainder of this article is structured as follows. In section 2, the VF algorithm is briefly explained. Then, the
proposed Bayesian extension is detailed in section 3. In section 4, the LB-VF framework is applied to two realistic exam-
ples. Finally, in section 5, the article is concluded.
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2 | VECTOR FITTING

The vector fitting (VF) algorithm is a well-known technique to build a rational macromodel that approximates a trans-
fer function.3-6 This transfer function or (for multiport S-parameters) transfer matrix S sð Þ is approximated by a function
F sð Þ as a sum of partial fractions:

S sð Þ≈F sð Þ=
XN
i=1

Ri

s−ai
+D+ sE: ð1Þ

Here, the ai and Ri are the poles and the corresponding residue matrices, respectively. These poles and resi-
due matrices can either be real or constitute complex conjugate pairs. Furthermore, using a suitable pole-
flipping scheme,3 stability can be enforced by keeping the real part of the poles negative. The Laplace variable
is denoted by s. D and E are optional constant and linear terms, describing the asymptotic behavior of the transfer
function.

2.1 | Sanathanan-Koerner iteration

An established way to obtain such a fit is by iteratively relocating a set of starting poles until convergence, using
Sanathanan-Koerner (SK) iterations.11 This technique fits a function F sð Þ to data samples of S sð Þ by first choosing a
set of ‘starting’ poles a0i

� �
and introducing a numerator function (matrix) p sð Þ and a denominator function q(s)

such that:

S sð Þ≈F sð Þ= p sð Þ
q sð Þ =

PN
i=1

ri
s−a0i

+ d+ se

PN
i=1

eri
s−a0i

+ed : ð2Þ

In the original VF implementation,3 ed=1, while for relaxed VF ed is a free variable, but an extra equation is added
to avoid trivial solutions (see4 for more details).

The initial poles can then be relocated by solving the linear least squares problem q sð ÞS sð Þ≈p sð Þ for ri
� �

, erif g, d, e
and ed. If samples of S sð Þ, denoted as S j

n o
, are known at Ns frequency points {sj}, j = 1, …, Ns, this can be summarized

in the complex-valued matrix equation:

Ax= b: ð3Þ

For example, for nonrelaxed VF and a scalar S(s), this results in:

A=

1
s1−a01

… 1
s1−a0N

1 s1
−S1
s1−a01

… −S1
s1−a0N

..

. ..
. ..

. ..
. ..

. ..
.

1
sNs −a01

… 1
sNs −a0N

1 sNs

−SNs

sNs −a01
… −SNs

sNs −a0N

266666664

377777775,

x= r1 … rN d e er1 … frN½ �T,
b= S1 … SNs½ �T:

ð4Þ

In the case of relaxed VF, ed is included in x and an additional condition
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ℜ
XNs

k=1

XN
i=1

eri
sk−a0i

+ed ! !
=Ns ð5Þ

is added to avoid a zero solution.4

In the case of a complex conjugate pair ri and ri+1 = r�i , ri + ri+1 and ℑ(ri− ri+1) are considered instead. Likewise,
Ai +Ai+1 and ℑ Ai−Ai+1

� �
replace Ai and Ai+1 as the corresponding columns of A . When S itself is complex, the

system

A0x= b0 ð6Þ

with

A0 =
ℜ A
� �

ℑ A
� �

264
375 and b0 =

ℜ b
� �

ℑ b
� �" #

ð7Þ

is solved instead. In this way, the linear system (6) is always real-valued.
When dealing with an n by m matrix-variate S sð Þ, it is vectorized and for each independent element l a matrix Al

and vector bl of the same form as A0 and b0 are constructed. Each such Al is QR-decomposed as Al =QlPl, and the lower

right parts of each Pl are vertically stacked: A00 = P
T

1,LR … P
T

nm,LR

h iT
. Likewise, a stacked vector b00 is constructed from

the lower part of each Ql and bl : b
00 = b

T
1Qi,L … b

T
nmQnm,L

h iT
. The coefficients of q(s) in x , denoted xL , are then com-

puted by solving

A00xL = b00, ð8Þ

yielding a common form for q(s). For more details, see Reference 5.
Using the initial poles a0i

� �
and the newly obtained erif g and ed, the zeros of q(s) are then calculated. As both q(s)

and p sð Þ share the same poles a0i
� �

, these poles cancel out, and the zeros of q(s) are the relocated poles {ai} of F sð Þ .
These are found by solving an eigenvalue problem, based on the minimal LTI state-space realization of q(s)12:

aif g=eig Aq−BqD
−1
q Cq

� �
, ð9Þ

where Aq is a matrix with the starting poles a0i
� �

as diagonal elements, Bq is a column vector of ones, Cq is a row vector
containing the erif g, and Dq equals ed. Thus, a relocated set of poles is obtained. In order to enforce stability, poles whose
real part is positive are flipped to the left half of the complex plane.3 The procedure is then iterated by replacing the ini-
tial starting poles with the relocated poles.

2.2 | Residue identification

Once the poles are relocated to their final position, identifying the residues Ri comes down to solving a linear system
for each element in (1):

AX =B, ð10Þ
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where

A=

1
s1−a1

� � � 1
s1−aN

1 s1

..

. ..
. ..

. ..
.

1
sNs −a1

� � � 1
sNs −aN

1 sNs

26666664

37777775,

X =

R1,1 � � � R1,nm

..

. ..
.

RN ,1 � � � RN ,nm

D1 � � � Dnm

E1 � � � Enm

26666666664

37777777775
,

B=

S1,1 � � � S1,nm

..

. ..
.

SNs,1 � � � SNs,nm

26664
37775:

ð11Þ

Similarly as for (4), both the sum of, and (the imaginary part of) the difference between complex conjugate pairs of
residues are considered instead of those residues themselves. When S itself is complex, the real and imaginary parts of
A and B are vertically stacked. As such, the system (10) is ensured to be real-valued.

3 | LINEAR BAYESIAN VECTOR FITTING

3.1 | Sampling erif g and ed
Revisiting (8) with the final, converged VF poles as the starting poles a0i

� �
, b00 is modeled by a Gaussian distribution:

b00 �N b00jA00x,σ2I
� �

ð12Þ

This allows one to treat the linear system (8) in a Bayesian manner when the samples {Sj} are subject to uncertainty,
solving for the distribution of x, rather than for the optimal value. A conjugate prior for x and σ2 is the following:

P x,σ2
� ��N xjx0,σ2Λ0

−1� �
IG σ2jα0,β0
� �

, ð13Þ

which is a σ2-dependent Gaussian distribution for x, and an inverse-gamma distribution for σ2. The parameters x0, Λ0,
α0 and β0 define this prior. They can either be set by prior knowledge, or chosen to represent the least informative dis-
tribution of the form (13). In the latter case, used in this article as well, the uninformative (Jeffrey's) prior is set to

P x,σ2
� �� σ2

� �−1
: ð14Þ

Using Bayes' theorem, some calculations (see Appendix A) now yield a posterior distribution of x having the
same form:

P x,σ2jb00
� �

�N xjx f ,σ
2Λ f

−1� �
IG σ2jα f ,β f

� �
: ð15Þ
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The parameters x f , Λ f , αf and βf can be obtained using the update rules:

x f =Λ f
−1

Λ0x0 +A00Tb00
� 	

ð16Þ

Λ f =Λ0 +A00TA ð17Þ

α f = α0 +
Nb

2
ð18Þ

β f = β0 +
b00

T
b00−x f

TΛ f x f + x0TΛ0x0
2

, ð19Þ

where Nb is the length of b00 . It is easily verified that, when using (14) as a prior, the results in (15)-(19) still hold, and
they are the same as if one were to choose x0 = 0, Λ0 = 0 and α0 = β0 = 0.

Since σ2 is still unknown, it can and should be marginalized out, in order to derive a marginal posterior for x (see
Appendix B):

P xjb00
� �

=
ð
P x,σ2jb00
� �

d σ2
� �

= t2α f xjx f ,
α f

β f
Λ f

 !−1 !
: ð20Þ

This is a multivariate t-distribution.
The marginal likelihood P b00

� �
can be readily derived by integrating the product of the likelihood (12) and the prior

(13) (see Appendix C):

P b00
� �

=
ð ð

P b00jx,σ2
� �

P x,σ2
� �

dxd σ2
� �

= 2πð Þ−
Nb
2

ffiffiffiffiffiffiffiffiffi
Λ0

��� ���
Λ f

��� ���
vuuut βα00

β
α f

f

Γ α f
� �
Γ α0ð Þ ð21Þ

The only dependency on b00 in this expression stems from the posterior parameters (16)-(19). This quantity is useful
because it is a measure of how well the model fits the data, for any value of its parameters. Hence, (21) can be used to
evaluate the quality of the starting poles, or their number.

3.2 | Pole distribution

Since the nonlinear step in (9) precludes an analytic propagation of the posterior distribution of erif g and ed in (20) to
the relocated poles {ai}, the distribution of the latter must be approximated. This is done by drawing samples from the
posterior distribution in (20) and solving (9) for each of these samples. The real part of any unstable sampled pole is
inverted to ensure stability.

3.3 | Sampling the residues

Similarly to the system described in section 3.1, the solution to (10) can also be treated in a Bayesian way. In this case,
the stochastic variability is modeled by a matrix normal distribution:

B�ℳNNs,nm BjAX ,I,Σ
� �

: ð22Þ
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The conjugate prior is now of the form:

P X ,Σ
� �

�ℳN N ,nm XjdlejX0,Λ0
−1
,Σ

� �
W−1 ΣjdlejV0,ν0

� �
, ð23Þ

which is a Σ-dependent matrix normal distribution times an inverse-Wishart distribution for Σ itself. After very similar
calculations to the ones in section 3.1, the posterior is shown to become:

P X ,ΣjB
� �

�ℳNN ,nm X jX f ,Λ f
−1
,Σ

� �
W −1 ΣjV f ,ν f

� �
, ð24Þ

where X is an N×nm matrix, and where the parameters can be calculated as:

X f =Λ f
−1

Λ0 X0 +A
T
B

� �
ð25Þ

Λ f = Λ0 +A
T
A

� �
ð26Þ

V f =V 0 +B
T
B−X f

T
Λ f X f +X0

T
Λ0 X0 ð27Þ

ν f = ν0 +NB, ð28Þ

with NB the number of rows in B.
In this case, the uninformative prior P X ,Σ

� �
/ Σ
��� ���−nm

yields a posterior of the same form where X0 =Λ0 =V =0

and ν0 = nm− 1 (or ν0 = 0 for the Jeffrey's prior P X ,Σ
� �

/ Σ
��� ���−nm+1

2
).

The unknown parameter Σ can again be marginalized out to obtain:

P XjB
� �

=
Ð
P X ,ΣjB
� �

d Σ
� �

=TNx ,nm X jν f −nm+1,X f ,Λ f
−1
,V f

� �
,

ð29Þ

where Nx is the number of rows in X . This is the matrix-variate t-distribution.

3.4 | Sampling pole-residue models

VF models (1) can now be sampled for a given transfer function using the scheme outlined in Figure 1. First, according
to section 3.1, erif g and ed are sampled Np times from their posterior distribution (20). Then, for each such sample, a set
of new poles are calculated by finding the zeros of (this sample of) q(s) (section 3.2). Next, for each pole set, Nr residue
sets are sampled as described in section 3.3. Each pole-residue set now forms a different rational model that is drawn
from the space of probable models given the data and the prior information.

4 | APPLICATION EXAMPLES AND NUMERICAL RESULTS

4.1 | Double folded stub filter

The statistical framework introduced above is now applied to a double folded stub filter, shown in Figure 2.13 This
design is a standard example in Keysight's Advanced Design System (ADS).14 As a realistic design example, it is used in
the following to highlight some potential applications of the novel LB-VF framework.
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4.1.1 | Uncertainty arising from additive noise

As mentioned before, an amount (even if minimal) of noise is always present in measurement data. It can be very
insightful for a designer to know in what range the actual transfer function could fall, given the noisy measurement
data. To this end, the frequency response—specifically, the S-parameter matrix—of the stub was simulated using ADS
in 101 points over a frequency range from 1 to 30 GHz. In order to emulate noise (eg, stemming from measurement
errors), uncorrelated Gaussian noise with zero mean and a standard deviation (SD) of 0.01 was added on top of the sim-
ulated S-parameters. Note that, because σ2 was marginalized out of (20) [and likewise Σ out of (29)], and because uni-
nformative priors were used, no knowledge of the magnitude of the noise is needed when applying LB-VF.

After a few iterations with regular VF to relocate the 15 starting poles, LB-VF was applied to the data, starting from
those relocated poles. An uninformative prior was used to sample Np = 500 pole sets, and for each pole set, Nr = 20 resi-
due sets were sampled, for a total of 10 000 models.

FIGURE 1 Linear Bayesian vector fitting framework: Graph of the

sampling of VF models (Mi, j), where Np pole sets are sampled, and NR

residue matrix sets are sampled for each of these pole sets

FIGURE 2 Geometry of the double

folded stub filter13
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The sampled poles are shown in Figure 3, while Figures 4 and 5 show the S11 and S21 parameters, respectively. As
can be seen in these figures, the 99.73% (3σ) confidence bound encompasses most of the original data. It ought to be
noted that these bounds are overconfident, as they are still conditioned on the locations of the (relocated) starting poles,
their number, and the rational form of the model. If the magnitude of the noise in the original data increases, the poste-
rior distributions (20) and (29) widen, the spread of the samples increases, and the confidence bounds widen.

4.1.2 | Effect of missing data

To demonstrate the behavior of LB-VF when part of the data is missing, the data from 6.8 to 9.7 GHz for the double
folded stub was discarded before relocating the initial poles or applying the LB-VF model.

FIGURE 3 The sampled distribution of the poles as a result of linear Bayesian vector fitting applied to the S11 parameter of the double

folded stub filter. The 500 samples for each pole are shown as blue dots, while the poles obtained with regular VF are plotted in red. The

locations of all relocated poles is shown in (A), while a closer look at the samples around on of the poles (indicated by the box) is shown in (B)

FIGURE 4 The result of linear Bayesian vector fitting applied to the S11 parameter of the double folded stub filter. The 10 000 rational

models were used to construct confidence intervals of 68.27, 95.45, and 99.73% (the 1-, 2-, and 3-σ bounds of a Gaussian distribution). These

confidence levels are shown in dark gray, gray, and light gray, respectively. The mean linear Bayesian vector fitting model, in this case

corresponding to the regular VF fit, is shown as a dashed red line. Simulations of the nominal design (without noise) at 1001 frequency

points, produced using ADS,14 are shown as a black line. The noisy data used to fit the models is shown as black crosses. The entire

frequency range (1-30 GHz) is shown in (A), while the (18.5-20.5 GHz) range is shown in (B)
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With part of the data removed, and with low amount of additive Gaussian noise (a SD of 10−3), the confidence bou-
nds are very narrow, as shown in Figure 6. With a higher amount of noise (a SD of 10−2), the confidence bounds
increase as well, as illustrated in Figure 7. These figures show some overconfidence, due to the conditioning on the
starting poles. Nevertheless, the confidence bounds can indicate when a design is not robust enough to remain above or
below a certain threshold, given the uncertainty. As the classical VF fit (here coinciding with the mean of the LB-VF
model) is quasi the same in both cases, such information is not present in a deterministic setting.

4.1.3 | Adaptive frequency sampling

If simulating a device at a certain frequency is computationally expensive, a full sweep over the frequency range of
interest becomes cumbersome or even impossible given time constraints. Therefore, it is advisable to fully characterize
the device with as few simulations as possible. A successful way to accomplish this is by simulating one frequency sam-
ple at a time, and build a rational model in the process. This is known as adaptive frequency sampling (AFS).15-18

A distinct advantage of having a measure of model uncertainty, such as LB-VF provides, is that it allows an efficient
sequential sampling of the device responses in function of frequency. An LB-VF model's intrinsic uncertainty removes
the necessity to rely on differences between models of different orders, as heuristic AFS algorithms15-18

FIGURE 5 The result of linear Bayesian vector fitting applied to the S21 parameter of the double folded stub filter. Colors are as in

Figure 4

FIGURE 6 The result of linear Bayesian vector fitting applied to the S11 parameter of the double folded stub filter, with the data from

6.8 to 9.7 GHz removed, and noise with SD 10−3. Colors as in Figure 4
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do. Nevertheless, it is advantageous to consider several LB-VF models, in order to mitigate the overconfidence stem-
ming from conditioning on the starting poles.

The uncertainty calculated from each of these models by grace of the samples drawn from them, is combined by
weighting them by their normalized marginal likelihoods with respect to the pole relocation system (21). These weights
are used to obtain a weighted SD of all samples. In order to increase the spread of sampled points, a small Gaussian-
shaped penalty, with an amplitude of half the maximum weighted SD, and a SD of 10% of the distance between points,
is subtracted around the known frequency points. This also adds an additional exploration focus, which can help to
identify previously undetected resonances.

The AFS scheme used is summarized in Figure 8. After four initial frequency points are evaluated, all of the LB-VF
models with highest order N are built, sampled from, and used to construct the uncertainty. The frequency point with

FIGURE 7 The result of linear Bayesian vector fitting applied to the S11 parameter of the double folded stub filter, with the data from

6.8 to 9.7 GHz removed, and noise with SD 10−2. Colors are as in Figure 6

FIGURE 8 Flowchart of the proposed AFS strategy
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highest uncertainty is determined and a new sample at this frequency is computed. For matrix-variate S , priority is
given to the diagonal elements' uncertainty, and only the element with the highest uncertainty determines the next
evaluation point. After this, new models are built, and so on. Using LB-VF models of different orders helps mitigate the
conditioning on the number of poles, because of the weighted average being taken. In Reference 10, the 10 highest
order models were used, to maximally utilize this effect. Naturally, taking more model orders into account increases
the computational cost. Because of this, and for the sake of efficiency, only up to three of the highest order LB-VF
models are built in this work, as a compromise. When the uncertainty no longer exceeds an a priori set threshold over
the entire frequency range, convergence is assumed, and the model with the highest marginal likelihood is chosen as a
suitable macromodel for the device response.

We apply the proposed AFS scheme using the measure of uncertainty described above to the example of the double
folded stub filter. Note that no noise is added in this case. Figures 9 and 10 show the samples drawn from the LB-VF
models and how they lead the selection of the next frequency point. After a total of 17 evaluations, the mean of the best
fit [with N = 15 in (1)] achieves a total root mean squared error (RMSE) of −83.3 dB with respect to 1001 linearly spa-
ced simulated samples. For comparison, a standard VF fit based on 17 uniformly spaced samples achieves an RMSE of
−53.6 dB.

4.2 | RDRAM memory channel

The proposed framework is now applied to a Directed Rambus DRAM (RDRAM) memory channel.19,20 The 4-port data
in this example was measured using a vector network analyzer (from 50 MHz to 2.5 GHz), and shows significant cou-
pling and reflection, and a large delay.

FIGURE 9 The eighth iteration in the AFS algorithm, for the

S11 parameter of the double folded stub filter. In the lower plot, the

known data points are represented as black dots. Samples drawn

from linear Bayesian vector fitting models of different orders

(500 each) are plotted in various shades of red, proportional to their

log-likelihood. The upper plot shows the overall uncertainty

measure in green. An arrow is also shown in the lower plot, at the

frequency where this uncertainty is highest, and thus where the

next evaluation will be done

FIGURE 10 As Figure 9, but for the S21 parameter of the

double folded stub filter. Note that the selection of the next sample

is motivated by the higher uncertainty for the S11 parameter
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4.2.1 | Uncertainty arising from additive noise

In this example, 51 out of the 201 measured points, in the frequency range of 0 to 2.5 GHz, were uniformly selected.
Gaussian noise with zero mean and a SD of 0.01 was again added to the original data points. As for the previous exam-
ple, an uninformative prior was used to sample Np = 500 pole sets, and for each pole set, Nr = 20 residue sets were sam-
pled, for a total of 10 000 models.

The application of the proposed LB-VF framework leads to the results shown in Figures 11-13, obtained for a model
with 47 poles. Again, the mean of the LB-VF model, which coincides with a traditional VF fit, differs somewhat from
the true data (the 201 measured points), but the latter remains within at least the predicted 99.73% confidence bound.

4.2.2 | Effect of missing data

As an additional example to verify the performance of the proposed modeling framework, the data from 1.50 to
1.75 GHz of the RDRAM memory channel was omitted before relocating the initial poles and applying the LB-VF
model. Gaussian noise (with a SD of 10−2) was also added. The benefit of a stochastic approach over a deterministic one

FIGURE 11 The sampled distribution of the poles as a result of linear Bayesian vector fitting applied to the S11 parameter of the

RDRAM memory channel. The 500 samples for each pole are shown as blue dots, while the poles obtained with regular VF are plotted in red

FIGURE 12 The result of linear Bayesian vector fitting applied to the S11 parameter of the RDRAM memory channel. The 10 000

rational models were again used to construct confidence intervals of 68.27, 95.45, and 99.73% (the 1-, 2-, and 3-σ bounds of a Gaussian

distribution). Colors are as in Figure 4
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FIGURE 13 The result of linear Bayesian vector fitting applied to the S31 parameter of the RDRAM memory channel. Colors are as in

Figure 4

FIGURE 14 The result of linear Bayesian vector fitting applied to the S11 parameter of the RDRAM memory channel, with the data

from 1.50 to 1.75 GHz removed, and noise with SD 10−3. Colors are as in Figure 4

FIGURE 15 The 26th iteration in the adaptive frequency

sampling algorithm, for the S11 parameter of the RDRAM memory

channel. In the lower plot, the known data points are represented as

black dots. Samples drawn from linear Bayesian vector fitting

models of different orders (500 each) are plotted in various shades of

red, proportional to their log-likelihood. The upper plot shows the

overall uncertainty measure in green. An arrow is also shown in the

lower plot, at the frequency where this uncertainty is highest, and

thus where the next evaluation will be done
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is clear for this example as well. The obtained confidence bounds encompass most of the true function in the region
where data is missing, as shown in Figure 14.

4.2.3 | Adaptive frequency sampling

The AFS algorithm outlined in section 4.1.3 can also be applied to the RDRAM memory channel example. Again, no
noise (apart from that present in the data) is added in this case. An example of the samples drawn and used in the AFS
algorithm is shown in Figures 15 and 16. Because the available measured data is a discrete set, the closest known point to
the point of maximum uncertainty in each AFS step is added to the set of known points. After 66 evaluations, the mean
of the best fit (N = 63) attains a total root mean squared error (RMSE) of −59.8 dB with respect to all measured data
(201 points) available. For comparison, a standard VF fit based on 66 uniformly spaced samples achieves an RMSE of
−43.3556 dB.

5 | CONCLUSIONS

In this article, a framework was introduced that expands the traditional VF macromodeling algorithm by extending it
with stochastic information in a Bayesian manner. This is done by solving VF's linear systems using Bayesian linear
regression, and sampling to propagate uncertainty through the nonlinear part of the VF algorithm.

The framework is able to provide quantitative information concerning the VF model uncertainty. As such, even
without prior knowledge about the nature of the uncertainty in the data, it can provide insight into how confident a VF
model is at any given frequency.

The applicability and potential of this framework is showcased by applying it to two realistic designs in three real-
world applications: quantifying model uncertainty in the case of noisy observations, displaying model confidence in the
case of missing data, and constructing a rational model with a minimal amount of evaluations using AFS. In each of
these examples, the appositeness of the LB-VF framework is demonstrated.
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APPENDIX A: DERIVATION OF POSTERIOR DISTRIBUTION FOR THE σ(s)-RESIDUE SYSTEM (8)

Using Bayes' theorem, (12) and (13) can be multiplied to obtain the form of the posterior distribution (with Nb the
length of b00 and Nx the length of x):

P x,σ2jb00
� �

/ P b00jx,σ2
� �

P x,σ2ð Þ

/ N b00jA00x,σ2I
� �

N xjx0,σ2Λ0
−1� �

IG σ2jα0,β0ð Þ

/ σ2ð Þ−
Nb
2 exp

−1
2σ2

b00−A00x
� �T

b00−A00x
� �� 	

× σ2ð Þ−Nx
2 exp

−1
2σ2

x−x0ð ÞTΛ0 x−x0ð Þ
� 	

σ2ð Þ−α0−1exp −
β0
σ2

� 	
:

ðA:1Þ
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With some algebraic manipulation one can show that:

b00−A00x
� �T

b00−A00x
� �

= b00−A00bx� �T
b00−A00bx� �

+ x−bx� �T
A00TA00 x−bx� �

, ðA:2Þ

where

bx= A00TA00
� 	−1

A00Tb00: ðA:3Þ

This is easily verified by substituting (A.3) into the right hand side of (A.2). The second term in the right hand side
of (A.2) can now be combined with the argument of the second exponential of (A.1) to obtain:

x−bx� �T
A00TA00 x−bx� �

+ x−x0ð ÞTΛ0 x−x0ð Þ

= x−x f
� �TΛ f x−x f

� �
−x f

TΛ f x f + x0
TΛ0x0 +bxTA00TA00bx, ðA:4Þ

with

Λ f =Λ0 +A00TA00 ðA:5Þ

x f =Λ f
−1

Λ0x0 +A00Tb00
� 	

: ðA:6Þ

After some more calculation, we can also write:

b00−A00bx� �T
b00−A00bx� �

+bxTA00TA00bx= b00
T
b00 ðA:7Þ

All this then leads to the posterior distribution:

P x,σ2jb00
� �

/ σ2
� �−Nx

2 exp
−1
2σ2

x−x f
� �TΛ f x−x f

� �� 	
σ2
� �−α f −1

exp −
β f

σ2

� 	
, ðA:8Þ

in which

α f = α0 +
Nb

2
ðA:9Þ

β f = β0 +
−x f

TΛ f x f + x0TΛ0x0 + b00
T
b00

2
: ðA:10Þ

This posterior is proportional to (15).

APPENDIX B: DERIVATION OF THE MARGINAL POSTERIOR DISTRIBUTION P xjb00
� �

Using this result, the marginal posterior distribution can be derived by integrating the posterior with respect to σ2 as
follows:
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P xjb00
� �
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APPENDIX C: DERIVATION OF THE MARGINAL LIKELIHOOD P b00
� �

As shown in (21), the marginal likelihood can be obtained by integrating the product of the likelihood (12) and the
prior (13):
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