
Proceedings of the 2019 Winter Simulation Conference
N. Mustafee, K.-H.G. Bae, S. Lazarova-Molnar, M. Rabe, C. Szabo, P. Haas, and Y.-J. Son, eds.

LEARNING TO FORGET: DESIGN OF EXPERIMENTS FOR LINE-BASED
BAYESIAN OPTIMIZATION IN DYNAMIC ENVIRONMENTS

Jens Jocqué
Tom Van Steenkiste

Pieter Stroobant
Rémi Delanghe
Dirk Deschrijver

Tom Dhaene

IDlab
Ghent university - imec

Technologiepark-Zwijnaarde 126
Ghent 9052, Belgium

ABSTRACT

Various scientific and engineering fields rely on measurements in 2D spaces to generate a map or locate the
global optimum. Traditional design of experiments methods determine the measurement locations upfront,
while a sequential approach iteratively extends the design. Typically, the cost of traveling between sample
locations can be ignored, for example in simulation experiments. In those cases, the experimental design
is generated using a point-based method. However, if traveling towards the next sample location incurs an
additional cost, line-based sampling methods are favored. In this setting, the sampling algorithm needs to
generate a route of measurement locations. A common engineering problem is locating the global optimum.
In certain cases, such as fire hotspot monitoring, the location of the optimum dynamically changes. In
this work, an algorithm is proposed for sequentially locating dynamic optima in a line-based setting. The
algorithm is evaluated on two dynamic optimization benchmark problems.

1 INTRODUCTION

Measurements in 2D or 3D spaces are ubiquitous in many science and engineering fields. These measurements
can be aimed towards assessing the global response surface or towards locating the global optimum. In the
first case, the measurements are space-filling and based on exploration of the measurement space whereas
the last case is a global optimization problem. Typically, these measurements are performed by a device
such as an Unmanned Aerial Vehicle (UAV), Unmanned Ground Vehicle (UGV), or robotic arm. Practical
examples are cartography (Gademer et al. 2009), vegetation monitoring (Berni et al. 2009), agricultural field
mapping (Valente et al. 2013), 3D mapping (Nex and Remondino 2014), electro-magnetic compatibility
(EMC) (Deschrijver et al. 2012), etc.

Design of Experiments (DoE) encompasses a range of methods to determine the order and location
of data acquisition which can be either physical measurements or simulations (Kleijnen 2008). Often, the
focus of DoE methods is on exploring the entire measurement space, known as space-filling design.

Classic DoE methods are typically one-shot approaches. All sample locations and their order are
determined before starting the measurements. There is a clear risk of choosing too many or too few sample
locations, which can either result in a large measurement cost or insufficient information respectively.
Real-life scenarios such as limited battery life or the possibility of mechanical failure (Carlson and Murphy
2005) enforce the limitations of one-shot approaches. This can be mediated by using a sequential DoE
strategy instead of a one-shot approach. Sequential strategies iteratively improve the result by adding

656978-1-7281-3283-9/19/$31.00 ©2019 IEEE

Jocque, Van Steenkiste, Stroobant, Delanghe, Deschrijver, and Dhaene

new samples, having the advantage that the location of the following sample point can be improved by
interpreting past measurements.

As classic DoE methods are used in simulation experiments or separated physical measurements, the
constraint that the UAV, UGV, or robotic arm needs to travel through the design space to perform the
measurement is often omitted. To incorporate this constraint, line-based approaches such as the one-shot
Boustrophedon path (Choset 2000) or a Hilbert curve (Hilbert 1891) can be used.

The Adaptive Line-Based Sampling TRajectOrieS (ALBATROS) algorithm (Van Steenkiste et al. 2019)
is an algorithm that combines this sequential and line-based sampling. This algorithm is a combination of a
path planning algorithm and a path sampling algorithm and is a good solution for a space-filling algorithm
when the amount of samples is not known upfront.

When the measurements are aimed towards finding a global optimum instead of constructing an accurate
representation of the entire measurement space, Bayesian Optimization (BO) (Jones et al. 1998; Mockus
1974) is frequently used. Bayesian optimization is a sequential design strategy for global optimization of
black-box functions. Often, the additional assumption is made that it is expensive to measure samples,
either due to computational requirements or experiment duration. The typical flow of a BO algorithm is
given in Figure 1.

get data

build surrogate model

minimize loss

select next sampling
location

Figure 1: Flow of Bayesian optimization algorithm.

Finding the global optimum with these assumptions becomes even more complex if the objective
function changes through time. In literature, this is known as a dynamic optimization problem (DOP)
(Floudas et al. 1999). Since many real world problems have a dynamic nature, it is important that DOPs
are studied elaborately. An example application is fire detection and monitoring (Martı́nez-de Dios et al.
2006). To model the dynamics it is necessary for algorithms to incorporate well-considered aging concepts.
Measurements that happened earlier, typically contain less information than new measurements. Data aging
allows to mathematically model this information loss. Examples are found in intrusion detection systems
(Gorodetsky et al. 2005), data stream mining algorithms (Chang and Lee 2005), and time series forecasting
(Gardner 2006). The age of a sample is often expressed as data freshness.

In this work, an algorithm is proposed that combines the sequential and line-based approach of DoE
methods with the BO solution for finding the optimum in a DOP by extending the ALBATROS algorithm
(Van Steenkiste et al. 2019). This enables the algorithm to solve global optimization problems with a
dynamic objective function.

This work is organized as follows. In Section 2 the novel algorithm is explained. Next, the experimental
setup is discussed in Section 3 and in Section 4 the experiments and the results are explained. Finally,
Section 5 concludes the paper and discusses the future work.

657

Jocque, Van Steenkiste, Stroobant, Delanghe, Deschrijver, and Dhaene

0:	Initial	samples

1:	Define	new	waypoint

Maximin	criterion

2:	Compute	path	extension

Trade-off	between
1)	shortest-path
2)	gathering	additional
samples

3:	Determine	points	along	path

(a) ALBATROS

0:	Initial	samples

1:	Define	new	waypoint

Expected	improvement

2:	Compute	path	extension

Trade-off	between
1)	shortest-path
2)	gathering	additional
samples
3)	sampling	closer	to	old
samples

3:	Determine	points	along	path

(b) novel algorithm

Figure 2: Phases of the ALBATROS algorithm and the proposed algorithm.

2 DYNAMIC ALBATROS ALGORITHM

The proposed algorithm is a sequential line-based BO algorithm capable of finding optima for dynamic
objective functions. It is implemented as an extension of the ALBATROS algorithm for 2D measurement
spaces. The algorithm requires an initial set of samples that can be obtained through any classic DoE
strategy. After initialization, the algorithm starts a sequential loop with identical steps to the ALBATROS
algorithm as shown in Figure 2. The first step is the definition of the new waypoint towards which the path
will be extended in one sequential iteration step, known as the path extension step. The original algorithm
defined the waypoint as the point where the least amount of information had been collected, represented
by the maximin criterion (Johnson et al. 1990), to ensure a quasi-uniform distribution of the information.
Instead, the novel proposed algorithm builds a spatiotemporal Gaussian Process (GP) and defines the new
waypoint using an acquisition function. As a second step, the algorithm computes the path from the current
location towards the new waypoint. Here, the original ALBATROS made a trade-off between gathering
samples along the way and the cost of the movement. This second step is fine-tuned as well in the new
algorithm so that it tends to travel closer towards older samples. The last step of the sequential loop selects
where to sample along the path.

For the remainder of this section, the proposed algorithm will be discussed elaborately. First, a brief
overview is given of how the concept of time is interpreted by the algorithm. The implementation and
simulation of time is vital for the simulation to be realistic. Second, the aging strategy is discussed. Here, it
is explained how the model handles recent samples differently from older samples. Next, the initialization
phase and the three phases in the sequential loop are discussed in detail.

2.1 Time Interpretation

Dynamic objective functions change through time. A dynamic optimization problem (DOP) was defined
by (Cruz et al. 2011) as follows:

DOP =

{
optimize f (xxx, t)
s.t. xxx ∈ F(t)⊆ S, t ∈ T

}
where:

• S ∈ Rn, S is the search space
• t is the time
• f : S×T → R, is the objective function that assigns a numerical value f (xxx, t) ∈ R to each possible

solution xxx ∈ S at time t ∈ T

658

Jocque, Van Steenkiste, Stroobant, Delanghe, Deschrijver, and Dhaene

• F(t), is the set of feasible solutions xxx ∈ F(t)⊆ S at time t.

A basic assumption of the algorithm is that the computational time is orders of magnitude smaller than
the traveling measurement time. This assumption can be justified since BO is well suited to study objective
functions that are expensive, either computationally or physically, to evaluate. To accomplish this, it is
necessary that the algorithm keeps a notion of time. Our proposed solution is an initialization parameter
which determines how long it takes to perform one measurement. This parameter must be chosen with
care. Setting the measurement time too high would make it impossible to capture the dynamics of the
objective function. Vice versa, setting this time too low could completely remove the time complexity by
allowing a lot of measurements in a short time. Note that in real-life applications this parameter is problem
specific and can not be chosen.

During the implementation of this algorithm, the continuous character of time was taken into account.
This means that subsequent evaluations of the objective functions always happen at different timestamps.
Indeed, when using only one measurement device, in real-life applications it is physically impossible to
perform multiple measurements at the same timestamp. Existing solutions for DOP, such as evolutionary
algorithms and particle swarm optimization are described and compared in (Moser and Chiong 2013). These
algorithms do not incorporate this constraint, allowing multiple measurements at the same timestamp. In
practice, this is equivalent to measuring with multiple probes simultaneously. Therefore, these algorithms
are out of scope of the current work and not included in the comparison.

2.2 Aging Strategy

To model the age of a measurement sample, an exponential smoothing approach is used. A smoothing
constant α (Brown et al. 1961) is usually chosen as 0 < α < 1 and is application specific. This concept,
exponential smoothing, has been researched extensively and has been successfully used in the discrete time
series forecasting domain. For more information, the reader is referred to (Gardner 2006).

We define exponential aging based on exponential smoothing as follows. When a sample is taken, it
receives a sample freshness equal to one. Every time a new sample is taken, the freshness value decreases
by α% with respect to its previous value. This means that for old samples, the freshness value will approach
zero. The freshness of a measurement at location x with value y can be represented mathematically as
follows:

freshness(xxx,y) = (1−α)i

with i the amount of samples taken since (xxx,y) was sampled. For the most recent sample, i = 0.

2.3 Phase 0: Gather Initial Samples

Phase 0 is the initialization phase of the algorithm. A valid collection of initial samples in its most
basic form consists of two samples on a line. More profound initialization strategies are possible as well.
Well-known examples are the Boustrophedon path (Choset 2000) or Hilbert curve (Hilbert 1891) which are
two line-based strategies aimed to cover the measurement space while minimizing the path cost. When a
path is obtained using such an approach, samples can be taken along that path at equidistant steps. Which
strategy is used for initialization, is application dependent.

If the algorithm is initialized with an initial general overview of the measurement space, it can focus
on capturing the dynamics of the different optima. The challenge here is not only to find the global optima
across the different local optima, but to track the movement, growth or shrinking of those optima. The
difficulty of the problem is illustrated in Figure 3. At time t, the most right peak is the global optimum,
but at time t +1 the objective functions has changed, resulting in the most right peak to be only a local
optimum.

If there were no initialization phase there is a risk of a cold start problem. The algorithm would have
to incorporate additional space-filling techniques first, in order to learn the locations of the different initial

659

Jocque, Van Steenkiste, Stroobant, Delanghe, Deschrijver, and Dhaene

(a) Objective function at time t (b) Objective function at time t +1

Figure 3: Behavior of a dynamic optimization problem. Over time the different optima can move, grow
or shrink.

local optima before it is able to capture the time dynamics of the measurement space. Although such an
initial exploration is possible, it is out of scope for this work.

2.4 Phase 1: Define New Waypoint

When the initialization is complete, the algorithm starts with the sequential loop. The new waypoint is
defined to maximize the amount of new information. ALBATROS defined this maximum increase of
information using the maximin criterion (Johnson et al. 1990). Since this criterion is not sufficient for
optimization problems, a more complex BO approach is used here.

First, a surrogate model is generated. This is done by building a spatiotemporal Gaussian process to
model the latent objective function. The main advantages of a GP are that very few assumptions are made
about the data and the capability of a GP to handle and estimate uncertainty. For more information about
Gaussian processes we refer to (Rasmussen and Williams 2006). The input of the spatiotemporal GP is
a n-dimensional coordinate vector x extended with a freshness value. The output is the measured value
y = f (xxx, t). When predicting a value, the coordinate vector is extended with a freshness of one and used
as input to the GP model.

Next, the surrogate model can be used to determine the new waypoint. This is done by defining an
acquisition function. A good acquisition function is capable of exploiting previous measurements and
exploring new regions. A frequently used acquisition function that makes a good exploration-exploitation
trade-off is the expected improvement (EI) (Jones et al. 1998), given in (1) where fmin represents the
current best minimum and Y represents the predicted value at point x. This is also the acquisition function
used for defining the new waypoint.

E[I(x)] = E[max(fmin−Y,0)] (1)

2.5 Phase 2: Compute Path Extension

The second step of the sequential loop involves the generation of the path from the last sample (the current
location) to the waypoint calculated in the previous step. First, a bounded Voronoi tessellation is constructed.
A Voronoi tessellation (also called a Voronoi diagram) of a set of inducing points consists of a set of edges
and a set of vertices. Here, the previous sample locations are used to generate the Voronoi tessellation. The
edges represent equidistant locations between the two nearest measurement locations. A Voronoi cell of a

660

Jocque, Van Steenkiste, Stroobant, Delanghe, Deschrijver, and Dhaene

point is defined by the surrounding edges of that point. For more information about Voronoi tessellations
and how to construct them, the reader is referred to (Aurenhammer 1991).

estart

xc,2

estop

xc,1

Figure 4: ALBATROS edge weight metric (Van Steenkiste et al. 2019).

After the construction of the Voronoi tessellation, the possible solutions of the path extension are
limited to the edges of the tessellation. Since the edges are equidistant locations between two previous
measurements, sampling and traveling along these edges is optimal with regarding to filling the space as
equally as possible. ALBATROS transforms the Voronoi tessellation into a weighted graph with nonnegative
weights. These weights are assigned by making a trade-off between the following, possibly conflicting,
goals. The path needs to be as short as possible but it should also attempt to visit locations far away from
previous samples. The weight of an edge was defined by ALBATROS as the surface of the triangles shown
in Figure 4. After calculation of the weights, they are normalized by subtracting them from the maximum
such that edges far from samples have lower weights. In this work, the proposed algorithm extends this
approach by adding an extra freshness factor to the weights as described in formula (2).

wnew(estart,estop) = wold(estart,estop)∗ (
freshness(xc,1)+ freshness(xc,2)

2
) (2)

Finally, the path from the last sample to the new waypoint can be obtained by using any shortest-path
algorithm for nonnegative weights. A frequently used solution for this problem is Dijkstra’s algorithm
(Dijkstra 1959). Using this path extension strategy ensures that the information gathering is optimally
spread out while giving the preference to sampling closer to older samples.

2.6 Phase 3: Determine New Points Along Path

Once a new waypoint is defined and a path towards that waypoint is computed, the algorithm determines
where to sample along that path. The ALBATROS algorithm uses a heuristic to determine these sample
locations. The points are chosen as far away as possible from the other points. Here, the proposed algorithm
does not use this heuristic, instead samples are taken equidistantly. This fixed distance between subsequent
samples is an additional parameter of the algorithm. This is the distance that the measurement device can
traverse in one unit of time.

This final phase concludes the sequential loop. Next, another iteration of this sequential loop can be
started if necessary. This is decided by any stopping criterion, such as time duration, traveled distance, or
another information metric. If no additional iteration is started, the algorithm terminates.

3 EXPERIMENTAL SETUP

The algorithm was implemented in Python. To measure the performance of the algorithm, the offline
error was chosen as a metric (Branke and Schmeck 2003). The formula is given in (3). This metric has
been used extensively and has been used as a standard performance measure for dynamic problems by
many researchers. For examples, the reader is referred to the survey paper (Moser and Chiong 2013). An
important advantage of this metric is that, since it is an average, it does not punish exploration at any
specific time instant (Nyikosa et al. 2018). This is an important property since exploration might not lead
to good solutions in the near future, but it can be necessary for good solutions in the long run. Another

661

Jocque, Van Steenkiste, Stroobant, Delanghe, Deschrijver, and Dhaene

(a) t = 0.0 (b) t = 0.5 (c) t = 1.0

Figure 5: Illustration of the dynamic character of the objective function.

property of this metric is that it favors algorithms that find relatively good solutions early on (Moser and
Chiong 2013).

offlineerror =
1
T

T

∑
t=1

(
F(realopt(t))−F(modelopt(t)

)
(3)

Since ALBATROS originally did not interpret the performed measurements and focused on the space-
filling aspect, changes had to be made to the algorithm to be able to compare them. Before computing
the metric, a surrogate model is built using the measured samples. Note that this surrogate model was not
interpreted by the ALBATROS algorithm in any way and did not influence any decisions of the ALBATROS
algorithm. Its sole purpose was interpolating the measured data points to calculate the metric.

4 RESULTS AND DISCUSSION

Our novel algorithm was compared with the original ALBATROS algorithm using the offline error metric.
First, the proposed algorithm is compared using peaks that are slowly being mirrored. The second dataset
consists of multiple peaks that move, grow and shrink randomly.

4.1 Mirrored Peaks

First, the proposed algorithm is compared on a modified peaks function (Borchers, H. W. 2018). The
original peaks function is static and is given in (4). It is transformed to a dynamic function by adding
a time dimension as illustrated in formula (5). This function mimics the behavior of multiple peaks and
valleys slowly being mirrored through time and is illustrated in Figure 5. Initially, when t = 0 there are
multiple peaks and valleys. Slowly all peaks and valleys decrease and converge to a flat surface given by
z = 0. This surface is reached halfway, at t = 0.5. At this tipping point, all peaks become a valley and vice
versa. Next, the peaks and valleys grow until t = 1. An animation of the evolution of the peaks function
is available at https://www.youtube.com/user/sumolab.

f (x1,x2) = 3× (1− x1)
2× e−(x

2
1)−(x2+1)2−10× (

x1

5
− x3

1− x5
2)× e−x2

1−x2
2− 1

3
× e−(x1+1)2−x2

2 (4)

fdynamic(xxx, t) = t× f (xxx)+(t−1)× f (xxx) with t ∈ [0,1] (5)

The experiment was performed in 2D and limited to the [0,1]2 space. The proposed sampling distance
was set to 0.2. The measurement probe can travel 0.2 distance units in one time unit. The value of the
aging factor α was set to 0.005. As stated before, the time goes from zero to one and performing a

662

https://www.youtube.com/user/sumolab

Jocque, Van Steenkiste, Stroobant, Delanghe, Deschrijver, and Dhaene

single measurement takes 0.005 time instances, allowing 200 samples to be measured for this experiment.
Computation time is neglected in the experiments because of the previously made assumption that sampling
time and movement time is orders of magnitude larger. At the end of every sequential loop, the offline
error is calculated. Both algorithms stop the sequential loop when t = 1 is reached.

To prevent possible cold start issues, both algorithms were initialized with the samples shown in Figure
6. Other space-filling DoE methods would suffice as well since the aim here is to get an initial view of the
objective function as described in section 2.3.

Figure 6: Initial samples for experiments.

The offline error comparison is shown in Figure 7. The red, dashed line is the ALBATROS algorithm
and the blue line is the proposed novel algorithm for dynamic optimization problems. Initially the score is
the same since no peak has been detected in the initial samples. When t = 0.11, the novel algorithm has
identified a good approximation of the optima as illustrated by Figure 8. This figure shows the traversed
trajectory and the resulting surrogate model. The blue lines represent the Voronoi tessellation, the black
points represent the samples and the black dashed line is the traveled trajectory. The yellow point is the
previous waypoint while the cyan points are the recent samples proposed in the last sequential cycle. It is
clear that the traveled trajectory is not optimal in terms of space-filling properties. The trajectory makes a
trade-off between exploration and exploitation, resulting in better modeling of the peaks.

In contrast, the ALBATROS algorithm has not yet detected any peaks because the more space-filling
trajectory was traversing the boundaries of the grid as illustrated by Figure 9. Since the objective function
contains few information at the borders, the surrogate model is a rather poor approximation. As the
time increases, the ALBATROS algorithm offline error improves, but the proposed algorithm continues to
outperform it as it is able to exploit previously gathered knowledge. As seen in Figure 10, the proposed
algorithm has a much closer approximation of the peaks.

Figure 7: Comparison of the offline error between ALBATROS and the novel algorithm on the mirrored
peaks data.

663

Jocque, Van Steenkiste, Stroobant, Delanghe, Deschrijver, and Dhaene

(a) Trajectory (b) Gaussian process

Figure 8: Trajectory and Gaussian process of the proposed algorithm after 5 sequential cycles, t = 0.11.

(a) Trajectory (b) Gaussian process

Figure 9: Trajectory and Gaussian process of the ALBATROS algorithm after 5 sequential cycles, t = 0.125.

664

Jocque, Van Steenkiste, Stroobant, Delanghe, Deschrijver, and Dhaene

(a) ALBATROS (b) Proposed algorithm

Figure 10: The surrogate model of the ALBATROS algorithm and the proposed algorithm with the mirrored
peaks dataset, t = 1.

4.2 Moving Peaks Benchmark

Second, a well-studied benchmark is used. The moving peaks benchmark (Branke 1999) consists of multiple
peaks where the height, width and position of each peaks changes through time. There are three standard
scenarios defined with respectively 5, 10 and 50 peaks and different height, width and positions parameters.
For our experiments, two peaks defined by the cone function (6) were used. With, N = 2 dimensions,
ppp the peak coordinates, h the height and w the width of the peak. A two-dimensional grid was defined
with coordinates in [0,1]2 space. The height of the peaks varied between 10 and 50. Moves between
subsequent timestamps are defined by drawing three random numbers from a uniform distribution. The
first two are picked from the interval [−0.05,0.05] and the last one is picked from the [−3,3] interval.
These respectively represent the change in the spatial coordinates and the height. An animation of the
evolution of the benchmark function is available at https://www.youtube.com/user/sumolab.

f (xxx) = h−w

√
N

∑
i=1

(xi− pi)2 (6)

The sampling distance was set to 0.2 and α was set to 0.005. Performing a single measurement takes
0.005 and as stated before, computation time is neglected. The offline error is calculated at the end of
every sequential loop. In contrast to the previous experiments, the algorithms do not stop when the time
reaches one. Instead, the algorithms continue to run until the difference in offline error stagnates. The
initialization samples are identical to the previous experiment and shown in Figure 6.

In Figure 11 the offline error comparison is shown. The novel proposed algorithm outperforms the
ALBATROS algorithm if executed long enough. It is important to run the experiments long enough
to compensate the random character of the moving peaks benchmark. Starting from ca. t = 0.30, the
proposed algorithm has a lower offline error. The offline error difference between ALBATROS and the
proposed algorithm remains more or less constant during the remainder of the experiment. To illustrate the
exploitation, Figure 12 is shown. On the left, the ALBATROS trajectory is given while on the right, the
novel algorithm is shown. It is clear that the proposed algorithm exploits previous measurements instead
of solely exploring the target space as the ALBATROS algorithm does.

665

https://www.youtube.com/user/sumolab

Jocque, Van Steenkiste, Stroobant, Delanghe, Deschrijver, and Dhaene

Figure 11: Comparison of the offline error between ALBATROS and the novel algorithm on the moving
peaks benchmark.

(a) ALBATROS (b) Proposed algorithm

Figure 12: The trajectory of the ALBATROS algorithm and the proposed algorithm on the moving peaks
benchmark when t = 0.3.

5 CONCLUSION

A novel algorithm for solving dynamic optimization problems was presented. The algorithm is a sequential
line-based sampling algorithm designed to find and track optima over time. This algorithm performs best
when measuring samples is expensive and includes a cost of the traversing the trajectory. The effectiveness
of the proposed algorithm was shown using a 2D dynamic dataset and the moving peaks benchmark.

Future work should be done on expanding the algorithm to multiple coordinate dimensions since it
is now limited to two dimensions. Additional work should be performed to determine the value of α

automatically. Now, the value of α is a parameter of the algorithm but good estimations of this parameter
require prior knowledge of the data.

REFERENCES
Aurenhammer, F. 1991. “Voronoi Diagrams - a Survey of a Fundamental Geometric Data Structure”. ACM Computing Surveys

(CSUR) 23(3):345–405.
Berni, J. A., P. J. Zarco-Tejada, L. Suárez, and E. Fereres. 2009. “Thermal and Narrowband Multispectral Remote Sensing for

Vegetation Monitoring From an Unmanned Aerial Vehicle”. IEEE Transactions on Geoscience and Remote Sensing 47(3):722–
738.

Borchers, H. W. 2018. “pracme: Practical Numerical Math Functions”. rdrr.io/rforge/pracma/. accessed 24th March 2019.
Branke, J. 1999. “Memory Enhanced Evolutionary Algorithms for Changing Optimization Problems”. In Proceedings of the

1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Volume 3, 1875–1882.
Branke, J., and H. Schmeck. 2003. Designing Evolutionary Algorithms for Dynamic Optimization Problems, 239–262. Berlin,

Heidelberg: Springer.

666

Jocque, Van Steenkiste, Stroobant, Delanghe, Deschrijver, and Dhaene

Brown, R. G., R. F. Meyer, and D. A. D’Esopo. 1961. “The Fundamental Theorem of Exponential Smoothing”. Operations
Research 9(5):673–687.

Carlson, J., and R. R. Murphy. 2005. “How UGVs Physically Fail in the Field”. IEEE Transactions on Robotics 21(3):423–437.
Chang, J. H., and W. S. Lee. 2005. “estWin: Online data stream mining of recent frequent itemsets by sliding window method”.

Journal of Information Science 31(2):76–90.
Choset, H. 2000. “Coverage of Known Spaces: The Boustrophedon Cellular Decomposition”. Autonomous Robots 9(3):247–253.
Cruz, C., J. R. Gonzalez, and D. A. Pelta. 2011. “Optimization in Dynamic Environments: A Survey on Problems, Methods

and Measures”. Soft Computing 15(7):1427–1448.
Deschrijver, D., F. Vanhee, D. Pissoort, and T. Dhaene. 2012. “Automated Near-Field Scanning Algorithm for the EMC Analysis

of Electronic Devices”. IEEE Transactions on Electromagnetic Compatibility 54(3):502–510.
Dijkstra, E. W. 1959. “A Note on Two Problems in Connexion with Graphs”. Numerische Mathematik 1(1):269–271.
Floudas, C. A., P. M. Pardalos, C. S. Adjiman, W. R. Esposito, Z. H. Gümüş, S. T. Harding, J. L. Klepeis, C. A. Meyer, and

C. A. Schweiger. 1999. Dynamic Optimization Problems, 351–412. Boston: Springer.
Gademer, A., F. Mainfroy, L. Beaudoin, L. Avanthey, V. Germain, C. Chéron, S. Monat, and J.-P. Rudant. 2009. “Solutions

for near real time cartography from a mini-quadrators UAV”. In Remote Sensing for Environmental Monitoring, GIS
Applications, and Geology IX, Volume 7478, 1–12. International Society for Optics and Photonics.

Gardner, E. S. 2006. “Exponential Smoothing: The State of the Arte Part II”. International Journal of Forecasting 22(4):637
– 666.

Gorodetsky, V., O. Karsaev, V. Samoilov, and A. Ulanov. 2005. “Asynchronous Alert Correlation in Multi-agent Intrusion
Detection Systems”. In Computer Network Security, edited by V. Gorodetsky, I. Kotenko, and V. Skormin, 366–379. Berlin,
Heidelberg: Springer.

Hilbert, D. 1891. “Ueber die Stetige Abbildung Einer Line auf ein Flächenstück”. Mathematische Annalen 38(3):459–460.
Johnson, M. E., L. M. Moore, and D. Ylvisaker. 1990. “Minimax and Maximin Distance Designs”. Journal of Statistical

Planning and Inference 26(2):131–148.
Jones, D. R., M. Schonlau, and W. J. Welch. 1998. “Efficient Global Optimization of Expensive Black-Box Functions”. Journal

of Global Optimization 13(4):455–492.
Kleijnen, J. P. 2008. Design and Analysis of Simulation Experiments, Volume 20. Cham: Springer.
Martı́nez-de Dios, J., L. Merino, F. Caballero, A. Ollero, and D. Viegas. 2006. “Experimental Results of Automatic Fire

Eetection and Monitoring With UAVs”. Forest Ecology and Management 234(1):1–10.
Mockus, J. 1974. “On Bayesian Methods for Seeking the Extremum”. In Proceedings of the IFIP Technical Conference,

400–404. London, UK: Springer-Verlag.
Moser, I., and R. Chiong. 2013. Dynamic Function Optimization: The Moving Peaks Benchmark, 35–59. Berlin, Heidelberg:

Springer.
Nex, F., and F. Remondino. 2014. “UAV for 3D Mapping Applications: a Review”. Applied Geomatics 6(1):1–15.
Nyikosa, F. M., M. A. Osborne, and S. J. Roberts. 2018. “Bayesian Optimization for Dynamic Problems”. arXiv preprint

arXiv:1803.03432.
Rasmussen, C. E., and C. K. I. Williams. 2006. Gaussian Processes for Machine Learning. Cambridge: MIT Press.
Valente, J., D. Sanz, J. Del Cerro, A. Barrientos, and M. Á. de Frutos. 2013. “Near-Optimal Coverage Trajectories for Image

Mosaicing Using a Mini Quad-Rotor over Iregular-Shaped fields”. Precision Agriculture 14(1):115–132.
Van Steenkiste, T., J. van der Herten, D. Deschrijver, and T. Dhaene. 2019. “ALBATROS: Adaptive Line-Based Sampling

Trajectories for Sequential Measurements”. Engineering with Computers 35(2):537–550.

AUTHOR BIOGRAPHIES
JENS JOCQUE is a master thesis student at Ghent university - imec, IDLab. His email address is jens@jocque.be.

TOM VAN STEENKISTE is a PhD student at Ghent university - imec, IDLab. His email address is TomD.VanSteenkiste@ugent.be.

PIETER STROOBANT is a PhD student at Ghent university - imec, IDLab. His email address is Pieter.Stroobant@UGent.be.

REMI DELANGHE is a master thesis student at Ghent university - imec, IDLab. His email address is Remi.Delanghe@UGent.be.

DIRK DESCHRIJVER is a professor at Ghent university - imec, IDLab. His email address is Dirk.Deschrijver@UGent.be.

TOM DHAENE is a professor at Ghent university - imec, IDLab. His email address is Tom.Dhaene@UGent.be.

667

mailto://jens@jocque.be
mailto://TomD.VanSteenkiste@ugent.be
mailto://Pieter.Stroobant@UGent.be
mailto://Remi.Delanghe@UGent.be
mailto://Dirk.Deschrijver@UGent.be
mailto://Tom.Dhaene@UGent.be

	INTRODUCTION
	DYNAMIC ALBATROS ALGORITHM
	Time Interpretation
	Aging Strategy
	Phase 0: Gather Initial Samples
	Phase 1: Define New Waypoint
	Phase 2: Compute Path Extension
	Phase 3: Determine New Points Along Path

	EXPERIMENTAL SETUP
	RESULTS AND DISCUSSION
	Mirrored Peaks
	Moving Peaks Benchmark

	CONCLUSION

