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Automated Sleep Apnea Detection in Raw
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Tom Van Steenkiste

Abstract—Sleep apnea is one of the most common sleep
disorders and the consequences of undiagnosed sleep ap-
nea can be very severe, ranging from increased blood
pressure to heart failure. However, many people are often
unaware of their condition. The gold standard for diagnos-
ing sleep apnea is an overnight polysomnography in a ded-
icated sleep laboratory. Yet, these tests are expensive and
beds are limited as trained staff needs to analyze the entire
recording. An automated detection method would allow a
faster diagnosis and more patients to be analyzed. Most al-
gorithms for automated sleep apnea detection use a set of
human-engineered features, potentially missing important
sleep apnea markers. In this paper, we present an algorithm
based on state-of-the-art deep learning models for automat-
ically extracting features and detecting sleep apnea events
in respiratory signals. The algorithm is evaluated on the
Sleep-Heart-Health-Study-1 dataset and provides per-epoch
sensitivity and specificity scores comparable to the state of
the art. Furthermore, when these predictions are mapped
to the apnea—-hypopnea index, a considerable improvement
in per-patient scoring is achieved over conventional meth-
ods. This paper presents a powerful aid for trained staff to
quickly diagnose sleep apnea.

Index Terms—Sleep apnea,
SHHS-1.

LSTM, deep learning,

|. INTRODUCTION

LEEP apnea is one of the most common sleep disorders
S and is characterized by the occurrence of breathing pauses,
also known as apneaic episodes, during the night which lead
to frequent awakenings [1]. It is typically classified as either
Obstructive Sleep Apnea (OSA) when the airway is blocked by
the throat muscles, Central Sleep Apnea (CSA), when the sig-
nals to control the breathing are disturbed, or hypopnea, when
the breathing becomes shallow. Hypopnea can further be cate-
gorized as either obstructive or central. Although some studies
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report that an estimated 49.7% of male and 23.4% of female
adults suffer from sleep-disordered breathing [2], many cases re-
main undiagnosed as patients are rarely aware of their condition.
These patients are at risk of hypertension, cardiac arrhythmia,
heart attacks and strokes [3], [4]. Some studies also show that
sleep apnea patients have an increased chance of being involved
in motor vehicle collisions [5].

To diagnose sleep apnea, an overnight polysomnography
(PSG) recording is performed in a specialized sleep labo-
ratory [6]. During this PSG, multiple physiological signals,
pertaining to respiration, oxygen saturation, cardiovascular
functioning and sleep status are recorded. Afterwards, a trained
sleep technician analyzes the data of the entire night and evalu-
ates each part of the signal using a standard reference such as the
American Academy of Sleep Medicine (AASM) guidelines [6]
for the presence of sleep apnea. Each event in the signal is then
annotated as either OSA, CSA or hypopnea. Often, only events
that are clinically relevant (e.g., long apneas) are scored and
shorter disturbances are unannotated. The annotations are sum-
marized in an Apnea-Hypopnea-Index (AHI) which represents
the number of apnea and hypopnea events per hour and which
is used to categorize patients into a normal, mild, moderate or
severe class.

As the amount of beds for PSG recording and the amount of
trained sleep technicians for analysis are very limited, waiting
times can get excessively long. These waiting times range in
between 2 and 10 months in the UK, and in between 7 and 60
months in the USA [7]. Furthermore, high intra- and inter-scorer
variability has been reported [8]-[10].

To increase the amount of people that can be analyzed, and to
reduce these high intra- and inter-scorer variabilities, automated
methods to assist the sleep technicians have been investigated.
These methods range from rule-based algorithms to automated
machine learning techniques and are generally based on human-
engineered features. Determining which features to use and how
many are needed to obtain the best predictive power, is a dif-
ficult task. Due to the human misinterpretations, potentially
interesting sleep apnea markers in the biometric signals can be
missed. Furthermore, noisy data can negatively impact the gen-
eralization properties of the models to new patients in practical
settings.

In this work, a novel sleep apnea detection method is pro-
posed, based on deep learning with long short-term memory
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neural networks using raw physiological respiratory signals
to automatically learn and extract relevant features, and de-
tect potential sleep apnea events. The performance is com-
pared to traditional human-engineered feature methods using
data from the the Sleep-Heart-Health-Study-1 (SHHS-1) ref-
erence database [11], and the numerical results confirm that
the proposed method outperforms the traditional methods when
generalizing to noisy data from other patients measured in a real
clinical setting.

Section II discusses related work in the field of machine
learning for the automated detection of sleep apnea. Section III
introduces the methodology of the new algorithm. Section IV
explains the experimental setup and Section V demonstrates the
results. Finally, in Section VI, conclusions are made.

Il. RELATED WORK
A. Physiological Signals

For accurate diagnosis of sleep apnea, trained staff use a
variety of physiological signals. Over the years, many different
sleep apnea detection methods have been proposed, based on
a subset of these signals. Due to the intrinsic link between the
respiratory system and sleep apnea, respiration and oximetry
signals are commonly used [12]. Respiratory information can
be extracted from nasal thermal sensors, pressure sensors near
the mouth, conductive bands around the chest or other types
of sensors. Oximetry measurements (typically SpO2) are also a
valuable tool for diagnosing sleep apnea [13], [14], although by
itself not sufficient [15].

The occurrence of sleep apnea is also reflected in other phys-
iological signals, such as the electrocardiogram (ECG), which
is typically heavily processed in order to extract relevant sleep
apnea markers. An example of such pre-processing is perform-
ing heart rate variability analysis on ECG signals [16]. Another
commonly used strategy is the extraction of respiratory infor-
mation from ECG signals in a process known as ECG Derived
Respiration (EDR) [17]. This is possible due to the respiratory
motion being modulated on top of the ECG signal. However,
other illnesses than sleep apnea can also significantly impact
these signals. As these PSG measurements are uncomfortable
for the patient, a lot of work has been done towards the de-
velopment of portable monitors with less obtrusive sensors. An
example of this is ballistocardiography for the detection of sleep
apnea [18], [19].

B. Sleep Apnea Detection

When analyzing sleep, all types of sleep apnea have to be
detected. Additionally, to get a complete assessment of sleep
quality, other events such as teeth grinding and snoring also
have to be detected. This is demonstrated by the large interest
in the recent CinC challenge [20]. However, the focus of this
work is on the detection of sleep apnea and as such, only the
detection of sleep apnea events will be analyzed in this study.

Various algorithms have been developed for automatically
detecting sleep apnea events in one or more of the physiological
signals originating from an overnight PSG. A common approach
is to use interpretable rule-based algorithms that provide a clear

explanation as to why some epochs of the signal are flagged as
containing a sleep apnea event or not [21]. In medicine, such
white-box approaches are very valuable.

However, other approaches with a higher learning capac-
ity, based on machine learning, can automatically detect
more complex patterns and make more accurate predic-
tions. Commonly used methods include Support Vector
Machines (SVM) [22], Logistic Regression (LR) [23], K-
Nearest-Neighbors (KNN) [22], [23], Linear Discriminant
Analysis [23], [24], Gaussian Processes (GP) [25] and Artificial
Neural Networks (ANN) [26]. These methods typically start
with computing a set of human-engineered features over a
certain epoch of the data. For each epoch, a prediction is made
whether or not it might contain an apnea event. These methods
do not capture the temporal correlation components that are
present in physiological signals. Specialized models, such as the
SVM-based discriminative Hidden Markov Model (HMM) [27]
utilize this time information to improve the accuracy of the
estimates. Recent developments in deep learning have led to an-
other temporal sleep apnea detection model. Long Short-Term
Memory (LSTM) neural networks, a type of Recurrent Neural
Network (RNN), were proposed as a good method capable of
detecting long-term as well as short-term correlations in time-
series of human-engineered features for sleep apnea [28]-[30]
as well as for other medical use-cases [31], [32]. Although such
models have incorporated valuable information by integrating
the time-based component, other valuable aspects of the data
are still lost, due the need for human-engineered features that
summarize the data into distinct values. Additionally, some of
these models are trained and analyzed on a human-selected set
of clean epochs. In practice, this leads to generalization issues
when analyzing data of new patients in real noisy settings.

Ill. PROPOSED ALGORITHM

In this work, a novel method is proposed using the LSTM
model. Instead of extracting human-engineered features, the
models are trained using a noise-filtered version of the actual
respiratory signal itself. The main goal of the algorithm is to
provide as much information as possible to the deep learning
network, such that it can automatically extract relevant respira-
tory markers for the detection of apnea events without the need
for human feature engineering. The complete workflow of the
training algorithm is shown in Fig. 1. The setup of this workflow
is that of a typical machine learning process. The process starts
with collecting respiratory data which is then pre-processed and
split into separate epochs. Each of the epochs is annotated based
on the annotation of trained sleep technicians. Then, the epochs
are used in a balanced bootstrapping scheme to create separate
datasets. Finally, each of the datasets is used to train a separate
LSTM model. During prediction, an aggregation step is added.
Each of these steps will be discussed in detail in the following
subsections.

A. Data Collection

The first step in the algorithm is the collection of respiratory
data. This can be extracted from various sources such as respira-
tory bands or the ECG. To train the models, the respiration data
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Fig. 1. Modeling sleep apnea: respiratory signals are pre-processed and combined with their label. Next, a balanced bootstrapping procedure

combines epochs into datasets for training multiple LSTM networks.
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portion indicates a sleep apnea event.

is combined with annotations. To create a robust model, the data
must include a sufficient amount of patients with large enough
variety in e.g., age, gender and physiology for which data of an
entire night has been recorded.

B. Pre-Processing and Epoch Creation

Raw physiological signals contain a wide range of noise due
to subject movement, electrical interference, measurement noise
and other disturbances. In any sleep apnea detection method,
noise canceling methods are essential and frequently used.

To extract relevant respiratory information, and to reduce
noise, the physiological respiratory signals are passed through
a fourth-order low-pass zero-phase-shift Butterworth filter with
a cut-off frequency of 0.7 Hz [33]. This cutoff frequency is
chosen to retain the major respiration components while remov-
ing as much noise as possible [34]. Next, motion artifacts of
the patient and baseline wander are removed by subtracting a
moving average filtered signal with a width of 4 seconds from
the original signal. Finally, the sampling rate of the physiolog-
ical signal is reduced to 5 Hz in order to speed up the analysis
while still keeping the most relevant respiratory information.
The mild filtering ensures that as much information as possible
is kept in the signal such that it can be considered raw. Note that
noisy sections of the signal are not removed from the dataset to
accurately reflect real clinical settings.

The filtered signals are segmented into 30 second epochs
with a stride of 1 second between them. Hence, the epochs
are overlapping and each second of the data is represented in

The binary label of an individual epoch is determined based on the annotation of trained staff at the end of that epoch. The darker shaded

multiple epochs. Overlapping the epochs is not a typical strategy
in sleep apnea research, but it offers some advantages. It allows
the model to make predictions on a per-second basis, increas-
ing the granularity of the detection. In addition, it significantly
increases the amount of data that can be used for training the
neural network.

C. Data Annotation

Finally, each of the epochs is labeled with annotations pro-
vided by a trained sleep technician that analyzed the data signals
according to specific guidelines, such as the AASM [6] or the
SHHS [11] guidelines. If at the end of an epoch, the sleep techni-
cian indicated an apneaic episode, the entire epoch was flagged
as a positive apnea episode. This process is illustrated in Fig. 2.

Since the goal of this study is to detect all apneas and to
provide a metric of the severity of apnea for each patient, and
hence to provide a metric of the AHI, we combine all annotations
into a single binary annotation (apnea or non-apnea).

D. Balanced Bootstrapping

Although sleep apnea is a common disorder, apnea-positive
epochs are a relatively rare occurance for each patient. The
majority of epochs is apnea-negative and only a small minority
is apnea-positive. When such an imbalanced dataset is used to
train machine learning models, most of these models will be
heavily biased towards the majority class which may provide
skewed results.
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Fig. 3. The balanced bootstrapping procedure is used to transform an
unbalanced dataset (Fig. 3a) into multiple balanced datasets. The major-
ity class is divided into sub-datasets with size equal to the minority class
(Fig. 3b). Subsequently, the minority class is copied to each of the sub-
datasets to create balanced sub-datasets (Fig. 3c). The minority class is
represented by the shaded bars while the majority class is represented
by the clear bars.

There are several possibilities to cope with an imbalanced
dataset. The most straightforward solution is to downsample the
dataset [35], [36]. With downsampling, apnea-negative epochs
are removed from the dataset until there are as many apnea-
positive epochs as there are apnea-negative epochs. In practice,
when dealing with a large data imbalance, this means a majority
of the data is removed from the dataset and a lot of valuable
information is lost.

Another commonly used method is oversampling the
dataset [35], [36]. Apnea-positive epochs are duplicated in
the dataset until there are as many apnea-positive epochs as
apnea-negative epochs. Although all information is retained, this
duplication increases the risk of overfitting to a subset of apnea-
positive examples, heavily impairing the generalization power
to new data.

To overcome these disadvantages of both methods, an inno-
vative procedure called balanced bootstrapping has been pro-
posed [37]. In this work, balanced bootstrapping is applied but
instead of picking random samples, the entire minority class is
used each time, as illustrated in Fig. 3. The large imbalanced
dataset is split up into several smaller balanced datasets. First,
the majority class in the unbalanced dataset is split into sub-
sets with size equal to the minority class. Then, the epochs of
the minority class are appended to the different sets of the ma-
jority class leading to multiple balanced datasets. Each dataset
contains all epochs from the minority class and a disjoint set of
epochs from the majority class. Each of these individual datasets
can now be used to construct a separate model.

E. Long Short-Term Memory Neural Networks

Each dataset resulting from the balanced bootstrapping pro-
cedure is modeled using a powerful model known as a Long
Short-Term Memory (LSTM) [38] neural network. It is used
to capture temporal information and accurately model the data.
LSTM networks are a type of RNN based on LSTM cells.

The network architecture for a single instance of the LSTM
is shown in Fig. 4. This architecture is similar to other archi-
tectures used for sequence modeling [31], [39]. It consists of
an LSTM layer with n; cells followed by a dropout layer with
dropout probability p;. Dropout layers are used to improve the
generalization of the network towards unseen data [40]. Finally,

T

Fig. 5. Flowchart of the LSTM cells used in this work.
a dense layer with ns cells is appended followed by a dropout
layer with dropout probability p, and the output prediction cell
with a sigmoid activation function. This activation function re-
sults in an output that can be interpreted as the probability that
the input epoch contains apnea. This architecture is replicated
for each LSTM model in Fig. 1.

A flowchart of the cell used in this work is shown in Fig. 5
and the corresponding equations are shown in (1).

iv = o(x Wy, + oA Wi, + A We, +b;)

fr = o(@Wa, +haa Wi, + i1 We, +by)

¢t = frerq + i tanh(z W, + hy Wy, +b.)

op =0o(x+tW,, +h Wy, + W, +by)

hy = o tanh(c;) (H

In these equations, o is the logistic sigmoid function, x; rep-
resents the input sequence x at time ¢ consisting of respiratory
data measured at 5 Hz and h; represents the hidden state at time
t. The input gate, forget gate and output gate are represented by
i, f, o respectively. The cell and cell input activation vectors are
represented by o, c. The weight matrices are represented by W
and the bias terms by b.

To tune the hyperparameters ny, no, p; and po of the network,
Bayesian optimization (BO) is used which is a powerful strat-
egy to optimize hyperparameters of medical machine learning
models [33], [41], [42]. It converges the network architecture
to an optimal design for accurate prediction of unseen data. In
this work, the Efficient Global Optimization algorithm is used
with the Expected Improvement acquisition function [43]. More
details about BO of hyperparameters are given in [41].

For each of the datasets generated by the balanced bootstrap-
ping procedure, a network as shown in Fig. 4 is trained using
minibatches of 32 epochs, consisting of 16 positive and 16
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negative epochs. The weights W and b of the network are opti-
mized using the adadelta optimizer [44] and the loss function is
the binary crossentropy as defined by:

N
loss = >~ —(yi log(p;) + (1 — i) log(1 — pi))
i=1
where N represents the number of samples to compute the
metric on, y; indicates the true binary label of sample ¢ and p;
represents the predicted probability for sample <.

F. Aggregated Prediction

To test the presence of a sleep apnea event in a new epoch of
data, it is pre-processed as in Section III-B and passed through
each of the trained LSTM models in Fig. 1. Each LSTM model
outputs the probability of an apnea event because of the sig-
moid activation function. The resulting probability estimates of
each separate LSTM model are then aggregated into a single
probability prediction per epoch by averaging. An epoch can
be labeled as either apnea or non-apnea by determining if the
estimated averaged probability p > 0.5. This classifier can be
further fine-tuned for specific use-cases by defining a threshold
p > 7 and optimizing the value of 7.

To get a measure of the severity of apnea of a patient, the
Apnea Hypopnea Index (AHI) is computed as the number of
apnea events longer than 10 seconds divided by the total sleep
time following the official AASM guidelines [6]. A prediction
of the probability of sleep apnea for each second of the signal is
made using the aggregated probability of sleep apnea from the
LSTM models. These generated annotations are then used to
compute the AHI. Using this score, patients are classified with
normal breathing, mild, moderate or severe sleep apnea:

® Normal breathing: AHI < 5
Mild sleep apnea: 5 < AHI < 15
Moderate sleep apnea: 15 < AHI < 30
Severe sleep apnea: AHI > 30

IV. EXPERIMENTAL SETUP AND METHOD
A. Dataset

To validate the proposed method, the SHHS-1 dataset [11] is
used, which contains data of 5804 adults of age 40 and older.
The comprehensive size of this dataset makes it possible to test
in a reliable way whether the algorithms are able to generalize to
many different patients. Out of these 5804 patients, 2100 patients
were sequentially selected. The only selection requirement was
having at least six hours of useful data. This set is then split up
five times in disjoint training sets of 100 patients and test sets
of 2000 patients. A training set of 100 patients provides enough
variation in the patients while keeping the computational burden
for the model low.

The dataset consists of 1008 female and 1092 male pa-
tients with mean age 62.5 & 12.6 (standard deviation) years,
mean weight 74.0 4+ 19.3 kg and mean BMI 27.2 + 5.3 kg/m?.
The mean recording length is 10.1 £ 1.6 hours with a mean
sleep time of 6.2 & 1.0 hours. There are 35 patients with nor-
mal breathing (mean AHI = 3.8 £ 1.1), 450 patients with mild

sleep apnea (mean AHI = 10.7 + 2.7), 815 patients with mod-
erate sleep apnea (mean AHI = 22.1 £ 4.3) and 800 patients
with severe apnea (mean AHI = 44.1 4 12.2).

The SHHS-1 dataset contains a variety of physiological sig-
nals measured for each patient including respiratory, cardiovas-
cular and oxygen saturation signals. In this work, the focus is on
sleep apnea detection in respiratory signals. A recent study on
the comparison of different respiratory signals showed that di-
rect measurements from respiratory belts around the abdomen
and thorax resulted in the best predictive performance [33].
Hence, the proposed algorithm is tested using these two respi-
ratory signals. To also test the performance of the algorithm on
indirect measurements, the EDR signal is includes as well. Each
of these signals are tested in a separately trained model:

® Abdores: Abdominal respiratory belt below the lower edge
of the left ribcage.

® Thorres: Thoracic respiration belt below left armpit.

® EDR: ECG derived respiration signal by filtering the ECG
signal with a cut-off frequency of 0.4 Hz and high-pass
filtering this signal with a cut-off frequency of 0.2 Hz [45].

The annotations of sleep apnea in the SHHS-1 dataset are
based on the SHHS method [11].

B. Benchmark Methods

To compare the performance of the proposed method ver-
sus the state-of-the-art, three model types are included in the
experimental setup:

e Standard machine learning: An Artificial Neural Network
(ANN) model [26], Logistic Regression (LR) model [23]
and Random Forest (RF) model [46] are evaluated and
compared as these are frequently used in sleep apnea or
other medical use-cases.

e Temporal machine learning: An LSTM network, similar
to the one introduced in Fig. 4, but now the inputs are
human-engineered features instead of raw respiratory sig-
nals. It is denoted as F-LSTM.

® New method: The proposed new method of Fig. 1, denoted
as LSTM, which uses raw respiratory signals that have
only been noise filtered.

The hyperparameters of all models are tuned using BO. The
implementation of the BO algorithm is based on the GPyOpt
Python library [47]. To train and test the models with the res-
piratory signals, the same pre-processing steps as Fig. 1 are
performed and typical discriminative features for sleep apnea,
sleep studies and biomedical health in general, are extracted,
both in the time-domain as well as the frequency-domain [24],
[27], [33]. An overview of features is provided in Table I.

For the standard machine learning models (ANN, LR and RF),
the set of 100 training patients is used in a 5-fold cross-validation
during optimization of the models to prevent overfitting. For the
temporal machine learning models (F-LSTM and LSTM), the
set of 100 training patients is split up per-patient in a training,
test and validation set for training and optimizing the model, as
is typically done in deep learning to avoid large computational
demands. These methods of training and optimization adhere
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TABLE |
OVERVIEW OF HUMAN-ENGINEERED FEATURES
USED IN BENCHMARK METHODS

Feature

mean, standard deviation, skewness, area under ab-
solute value

mean of heights, standard deviation of heights, skew-
ness of heights, number of peaks, mean inter-peak
distance, standard deviation of peak-distance, skew-
ness of inter-peak distance, sum of peak heights
peak frequency, mean frequency, central frequency,
band power

Origin
Time-domain

Respiratory peaks

Frequency-domain

to the recommendations and common practices for each model
type.

As this study aims to analyze the predictive power of several
algorithms for the automated detection of sleep apnea in clinical
settings, no epochs are removed from the training set, nor from
the test set.

C. Evaluation Criteria

Sleep apnea detection algorithms are evaluated using a variety
of metrics. Typically, the per-epoch classification accuracy is
calculated using metrics such as the sensitivity, also known as
recall, and specificity. These are based on the number of True
Positives (TP), False Positives (FP), True Negatives (TN) and
False Negatives (FN). Another commonly used metric is the
classification accuracy.

sensitivity = TP/(TP + FN)
specificity = TN/(TN + FP)
accuracy = (TP + TN)/(FP + TN + TP + FN)

Preferably, all these metrics have a high score. However, they
can easily be influenced by changing the decision threshold
7 in Section III-F. Therefore, a more complete assessment is
achieved by computing the Receiver Operator Characteristics
(ROC) and the associated area under the curve (AUROC) [23]
as these metrics summarize the results for all thresholds 7. The
ROC curve is created by determining the unique pairs of sen-
sitivity and specificity for all possible thresholds 7 and plotting
this in a graph of sensitivity versus 1 — specificity [48]. In order
to compute this, the models need to output a probability p of
an event. All models used in this experimental setup are config-
ured to output this probability. The area under the curve can be
computed by integrating across all thresholds.

Many works in literature report very high sensitivity and
specificity scores. However, when dealing with datasets that
have an imbalance in the number of positive vs negative samples,
such metrics can provide misleading insights [35], [36]. As this
imbalance is certainly the case in sleep apnea, it is advisable to
further take into account the precision and negative-predictive-
value (NPV) metrics.

precision = TP/(TP + FP)
NPV = TN/(TN + FN)

TABLE Il
OPTIMAL HYPERPARAMETERS FOR LSTM MODEL RESULTING
FROM THE BAYESIAN OPTIMIZATION PROCEDURE

signal nl n2 pl p2
abdores | 100 50 0.5 0.5
thorres 100 50 0.5 0.5
EDR 50 20 0.14 0.27

Given that the precision is also susceptible to an arbitrary
decision threshold, the possible combinations of precision and
sensitivity can be summarized in the precision-recall curve and
the area under this curve (AUPRC). The PR-curve is computed
using a similar method as the ROC curve but instead of pairs of
sensitivity and specificity, it uses pairs of precision and recall.

Next to being able to accurately predict the per-epoch annota-
tion label, it is also important to be able to predict the per-patient
AHI. Hence, the classification accuracy per AHI class is also
computed. This reflects the accuracy of categorizing a patient
in any of the 4 AHI classes. To compute these scores, the deci-
sion threshold 7, discussed in Section III-F, is optimized. The
threshold 7 determines when a specific probability of apnea is
sufficient to flag the epoch as containing an apnea event. The
AHI classification of the 100 training patients is computed for
various decision thresholds 7 between 0 and 1. The threshold
7 leading to the best classification accuracy for the training pa-
tients is used to compute the AHI for the test patients. This is
repeated across the five iterations of the experiment.

V. RESULTS AND DISCUSSION

In the following discussion, the parameters for the proposed
LSTM model are presented and discussed. Next, the per-epoch
metrics are discussed and compared to literature. The per-
subject metrics are also discussed and the advantages of the bal-
anced bootstrapping procedure are analyzed. Finally, the overall
performance of the model is evaluated.

A. Parameters of the Model

The optimal hyperparameters of the LSTM model for each
of the respiration signals, generated by the BO procedure, are
shown in Table II. In addition to the parameters that were op-
timized, other parameters were considered fixed, namely: the
sampling frequency f, of the input data, the epoch length l¢pocn
and the stride Sepoch between consecutive epochs. The AUPRC
on the validation dataset is computed for a range of the pa-
rameters. The effect of varying these parameters is shown in
Fig. 6.

Changing the sampling frequency f; has little to no effect on
the performance of the model as demonstrated by Fig. 6a. This
is because all signals have been low-pass filtered with a cutoff
frequency of 0.7 Hz during the pre-processing step, as discussed
in Section III-B.

On the other hand, changing the length of the epochs does
have a considerable impact on the performance of the model as
demonstrated by Fig. 6b. For the abdores and thorres signals,
an improvement can be seen up to a length of 30 seconds.
After that, the performance gain is minimal although the
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Fig. 6. Influence of the model parameter settings on the AUPRC of the validation dataset.

computational requirements drastically increase. This is mainly
due to the LSTM model being used. Although the longer epochs
contain more valuable data, the results show that the LSTM
model can no longer successfully exploit this extra information.
In addition, increasing the epoch length leads to a longer training
process.

Lastly, when increasing the stride between epochs, there is a
slight drop in performance as demonstrated by Fig. 6¢c. When
the stride is small more data is available to train the model on.
When choosing a larger stride, the amount of epochs in the
training data drops.

B. Per-Epoch Score Evaluation

Table III provides an overview of all per-epoch evaluation
metrics for each model and each respiration signal separately.
The values represent the mean and standard deviation across
the five experiment iterations. The per-epoch results show that
in general, the LSTM model outperforms the state-of-the-art
models, especially when evaluating the AUPRC. This metric
demonstrates a considerable reduction in false positives for the
proposed model in comparison to the benchmark methods. How-
ever, the amount of false positives is still quite high across all
tested methods and this can be attributed to several causes:

e Typically, only episodes longer than 10 seconds are
annotated. However, the models make decisions on a
per-second basis and hence also detect shorter respira-
tory disturbances. Luckily, these short false positives can
easily be filtered out by a post-processing step.

® As mentioned in Section IV-B, no manual cleaning has
been performed on the data to accurately reflect a real-life
measurement of a patient. Only noise-canceling meth-
ods have been applied, but these cannot fully remove all
measurement noise. The models can interpret this noise as
irregular breathing and flag the epoch as an apnea episode.
The proposed LSTM model is more robust against noise
as it evaluates the full data of the epoch to make a decision
instead of only using a set of summarized features. Man-
ual epoch removal can significantly improve these results
as shown in other works, but is not representative of the
use-case this work aims to evaluate.

¢ All models aim to detect sleep apnea events based on res-
piratory signals. However, trained sleep technicians also
take into account other signals such as the oximetry data.
The proposed method is a way of quick screening to assist
trained staff.

¢ The human annotations of the position of the sleep apnea
events are not exact to the second. However, the model
evaluation requires the position to be as accurate as the
annotations. Often, the models start detecting several sec-
onds too early or too late. When computing the AHI, used
in analysis of results per patient, this does not influence
the results in any way.

These results can be compared with scores reported in
literature. Table IV provides an overview of several other
studies found in literature for automated prediction of sleep
apnea using respiratory signals or the ECG signal. The standard
machine learning models included in the comparison are the
Support Vector Machine (SVM) model [49], the LR model [50]
and the RF model [51]. The temporal machine learning models
include the LSTM model [29], [30] and the SVM-based Hidden
Markov Model (HMM) [27]. The comparison also includes
a rule-based model [52] and a deep-learning Convolutional
Neural Network (CNN) model [53]. For an excellent overview
of other models in sleep apnea detection, we refer to two recent
review papers [12], [54].

The comparison shows how the other studies typically achieve
high scores for apnea classification using the ECG signal when
the model is based on human-engineered features. This is in
contrast to scores for the EDR method used in this work. A
major limitation of the ECG signal however, is the influence of
other illnesses on the sleep apnea analyses. The EDR signal is
less susceptible to this but is still influenced by noise. When
comparing the studies that use respiration signals, the results
are comparable to our proposed LSTM method. Note however,
that it is difficult to fully compare these results as they are
computed on different datasets and with different experimental
setups. Furthermore, without the AUPRC metric, it is difficult
to analyze the performance of the algorithm with regards to
false positive predictions. As there is a large data imbalance,
algorithms with more false positives than true positives can still
achieve good scores using the other metrics. With this AUPRC
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TABLE IlI
EVALUATION METRICS FOR THE DIFFERENT SLEEP APNEA DETECTION MODELS FOR EACH RESPIRATION SIGNAL, AGGREGATED ACROSS ALL EPOCHS OF
THE 2000 UNSEEN TEST PATIENTS AND AVERAGED ACROSS THE FIVE EXPERIMENT ITERATIONS RESULTING IN THE MEAN AND STANDARD DEVIATION
ESTIMATES. ALL METRICS ARE EXPRESSED IN PERCENTAGES. IN GENERAL, THE PROPOSED LSTM MODEL OFFERS THE BEST RESULTS

(a) Non-temporal models

Abdores Thorres EDR
% ANN LR RF ANN LR RF ANN LR RF
sensitivity | 66.0 +2.7 314487 17.5+1.1 | 70.0£34 76.6+3.3 17.2+1.8 | 40.2+24.8 96.6+4.0 7.7+1.4
specificity | 55.9+24 79.5+6.7 956+0.8 | 56.4+4.2 4094+49 96.3+0.7 | 63.9+23.3 54+6.1 99.2 +£0.4
precision 23.8+06 245+1.5 456+0.0 | 25.14+1.0 21.2+0.7 49.2+28 | 18.9+0.9 176 £ 0.4 67.7+8.2
NPV 88.74+0.5 84.84+06 84.8+0.2 | 90.0+0.5 89.24+0.2 84.84+0.3 | 83.9+0.9 88.44+0.6 83.7+0.2
accuracy 57.7+1.6 71.24+4.1 82.1+0.6 | 58.7+3.0 470+35 826+04 | 59.8+14.2 21.2+4.4 83.4+0.3
AUPRC 208+0.1 19.0+0.5 23.3+06 | 222404 20.1+03 22.7+0.6 | 18.0+0.5 175+ 0.5 20.8+0.6
AUROC 58.7+0.6 53.0+£1.0 54.8+0.4 | 62.14+0.7 57.7£05 554+06 | 51.6+1.3 50.8 0.8 524404
(b) Temporal models
abdores thorres EDR

% JLSTM LSTM JLSTM LSTM JLSTM LSTM

sensitivity 579+86 62.3+29 | 629+3.5 67.8+25 | 48.8+10.2 52.1+0.0

specificity | 73.9+10.0 80.3+£23 | 77.2+4.5 76.5+2.3 | 60.8+12.5 61.8+1.4

precision 33.0+£58 399+19 | 36.8+3.1 37.7+1.6 | 21.1£22 22.14+0.2

NPV 89.54+0.9 91.1+04 | 90.9+04 91.94+04 | 8.0£06 86.1+0.2

accuracy 71.1 £6.8 7724114 | 74.7+£3.1 T75.0+1.4 | 58.7+£86 60.1+0.9

AUPRC 36.4+2.4 45.3+1.2 | 43.94+0.2 48.0+1.0 22.1+0.9 22.7+0.2

AUROC 71.5+17 77.5+05 | 76.94+0.8 79.7+04 | 57.6+1.7 58.8+0.2

TABLE IV

COMPARISON METRICS FROM SEVERAL OTHER SLEEP APNEA STUDIES USING EITHER ECG OR RESPIRATORY DATA. EVENT TYPES ARE CLASSIFIED AS
APNEA (A), OBSTRUCTIVE APNEA (O), HYPOPNEA (H) OR NO APNEA (N). NO STUDIES REPORT THE VALUABLE AUPRC METRIC.
ALL VALUES ARE REPRESENTED AS PERCENTAGES

study model signal event dataset granularity | sensitivity specificity precision npv accuracy AUPRC AUROC
[29] LSTM ECG AH/N  35+45 epoch 99.9 100.0 - - 99.9 - -
[30] LSTM ECG O/N 35 recording - - - - 97.8 - -
[27] SVM-HMM  ECG O/N 70 subject 82.6 88.4 - 86.2 - 94.0
[49] SVM resp.  AH/N 4 epoch 93.2 88.9 90.0 - 89.9 - -
[50] LR resp.  AH/N 148 subject 88.0 70.8 - - 824 - 90.3
[51] RF resp. A/N 8 epoch - - - - 92.8 - -
[53] CNN resp. O/N 100.0 epoch 74.7 - 74.5 - 74.7 - -
[52] rule-based resp. A/N 100.0 epoch 83.6 72.3 - - - - -

metric, a more complete assessment of the performance can be
made.

C. Per-Patient Score Evaluation

When physicians analyze a patient to estimate the severity
of sleep apnea, the individual per-epoch scores are not used.
Instead, they base their decisions on the aggregated AHI metric.
Fig. 7 shows the confusion matrices for the AHI classification
for each benchmark method computed using the abdominal res-
piratory signal. The confusion matrices represent the mean (and
standard deviation) across the five experiment iterations. The
figure demonstrates that the predictions of the LSTM model are
more concentrated around the actual target class than for the
other models. Importantly, no severe apnea cases where classi-
fied as normal breathing with the LSTM model. The predictions
for the other models are more biased.

The results of the confusion matrices can further be summa-
rized in a classification accuracy graph as shown in Fig. 8 for
all respiration signals and all models. The graph shows that in
general, all models perform much better with the moderate and
severe apnea cases than the normal or mild cases when using
respiratory data. This can be traced back to different dynamics
in respiration for patients with normal breathing when compared

to patients with severe apnea. Studies have shown that patients
with severe obstructive apnea have a higher activity in the sym-
pathetic nervous system [55], [56]. When the activity in the
sympathetic nervous system increases, the respiration rate also
increases. As the amount of normal (1.65%) or mild (22.70%)
apnea patients is much more limited in the database than the
amount of moderate (47.70%) or severe (34.95%) patients, the
normal respiration patterns are underrepresented in the dataset
and the model is unable to sufficiently learn these dynamics in
comparison to the dynamics of severe apnea patients.

When analyzing the AHI classification accuracy, the perfor-
mance of the other benchmark models is improved when com-
pared to only analyzing the per-epoch metrics. This is because
the per-epoch metrics require predictions to be accurate for the
exact location/duration of the event.

Fig. 8c shows the classification accuracy for the EDR signal.
These results show that the accuracy of the model with derived
respiration is less then when using direct respiration.

D. Effect of Balanced Bootstrapping

The confusion matrices can also be used to assess the
variation of predictions across the different bootstraps from
Section III-D. Fig. 9 demonstrates the mean and standard
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Fig. 8.

Classification accuracy for each AHI class and each respiratory signal averaged across the five experiment iterations. The LSTM model

offers the best overall performance. There is a considerable drop in performance for the EDR signal.

deviation of AHI classification in confusion matrices, com-
puted using the three different respiration signals with the LSTM
model across the different balanced bootstrapping predictions
in one of the five experiment iterations. The figures demon-
strate an increased variation in predictive performance across
the bootstrapped models for the EDR signal when compared
to the models with respiratory signals, indicating an increased

advantage of the balanced bootstrapping procedure when the
signal is less clean.

E. Overall Performance

When comparing the metrics and analyses, the LSTM model,
trained on respiratory signals without any human feature
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There is a larger variation for the EDR signal than for the respiratory signals.

engineering outperforms the current state-of-the-art methods for
sleep apnea detection in respiratory signals. When comparing
the specialized metrics for imbalanced data, the LSTM model
shows a significant increase over the state-of-the-art models. Be-
cause the LSTM model learns and predicts from raw data with
only minimal noise filtering, it is able to provide more stable
predictions in practical settings than the other models, resulting
in less false positives.

The SHHS-1 dataset was used in this experiment for its large
size, enabling us to test in a reliable way if the developed meth-
ods are able to generalize to new, unseen patients with a vari-
ety of characteristics. However, since the development of this
dataset, there has been a considerable improvement in apnea
annotation criteria for the reduction of inter-rater and intra-rater
variability as demonstrated by recent studies [10]. As annota-
tions using these new criteria are more consistent, the predic-
tions of models trained using these new criteria will also be more
consistent, which will result in higher performance metrics.

The proposed model offers a powerful method for quickly
analyzing the recording based on respiratory information alone.
It represents a first important step towards a fully automated
sleep apnea detection method. Furthermore, it also provides
a method of quickly indicating interesting epochs for trained
staff, allowing them to focus on the interesting sections during
the night, and allowing more patients to be evaluated.

VI. CONCLUSION AND FUTURE WORK

As sleep apnea is one of the most common sleep disorders
and the consequences can be very severe, more patients need
to be analyzed and automatic detection methods are needed.
Many such methods have been proposed over the years. These
typically use human-engineered features. In this work, a novel
method of training LSTM networks on the respiratory signal
itself, i.e., without the need for manual feature engineering,
is proposed. The method is able to detect OSA, CSA as well
as hypopnea. Preprocessing the signals to extract respiratory
information combined with efficient usage of the data via the
balanced bootstrapping scheme enables the training of LSTM

networks on long sequences of respiratory signals, which results
in a more robust and more accurate model when analyzing new
patients.

The analysis is performed using typical sleep apnea metrics
as well as specialized metrics for imbalanced data. The results
of evaluating this model on five sets of 2000 unseen patients
show a considerable improvement when compared to the cur-
rent state-of-the-art. There is a significant increase in per-epoch
performance as well as in accuracy for AHI-based classification.
This study also demonstrates the importance of using specialized
metrics for imbalanced data when assessing the performance of
machine learning models for the detection of sleep apnea. These
results provide valuable insights for the further development of
automated sleep apnea screening tools.

When analyzing sleep quality, other events such as teeth
grinding and snoring are also equally important. In future work,
our model will be extended to also include these other types
of event to provide a complete and accurate sleep analysis
method.
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