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A Bayesian Approach to Adaptive Frequency
Sampling

Simon De Ridder, Dirk Deschrijver, Domenico Spina, Tom Dhaene and Dries Vande Ginste

Abstract—This paper introduces an adaptive frequency sam-
pling scheme, based on a Bayesian approach to the well-known
vector fitting algorithm. This Bayesian treatment results in a
data-driven measure of intrinsic model uncertainty. This uncer-
tainty measure can in turn be leveraged to sample sequentially
in an efficient and robust way. A realistic example is used to
visualize the proposed scheme, and to confirm its proficiency.

I. INTRODUCTION

Over the course of the past decades, computer aided design
simulations have become essential to designers of high-speed
circuits, as an efficient alternative to prototyping, to deal
with increasing complexity and bandwidth. Nevertheless, this
increase in complexity and bandwidth drives such simulations
to ever more intricate and computationally expensive calcula-
tions.

For many passive and linear electromagnetic systems (fil-
ters, connectors, . . . ), analysis in the frequency domain is
the norm, and in these cases an adaptive sampling scheme
is of considerable importance. Adaptive Frequency Sampling
(AFS), namely, allows the characterization of systems over
the desired frequency range using a minimal amount of such
expensive simulations [1]–[4]. At the same time, the number
of frequencies at which simulations are carried out, must be
sufficient to accurately model the dynamic behavior of the
system. Customarily, this is achieved by means of a rational
macromodel, most often Vector Fitting (VF) [5]–[8], combined
with a heuristic measure of model uncertainty by comparing
models of different orders.

In this paper, a Bayesian approach to VF is introduced,
termed Linear Bayesian VF (LBVF). This framework produces
an intrinsic measure of model uncertainty, most suitable for
AFS schemes. The application of this framework to a repre-
sentative example will confirm its aptness and efficiency. A
prototypical version of this framework was presented in [9],
on a one-port example.

II. LINEAR BAYESIAN VECTOR FITTING

A. Vector fitting

The VF algorithm is a well established method for con-
structing rational macromodels of transfer functions. At its
core, it uses so-called Sanathanan-Koerner (SK) iterations [10]
to relocate the poles of the rational model until convergence.
In the following, the VF algorithm is briefly detailed.

S. De Ridder, D. Deschrijver, D. Spina, T. Dhaene and D. Vande Ginste
(IDLab, Department of Information Technology, Ghent University-imec, 9000
Gent, Belgium)

E-mail: simon.deridder@ugent.be

The VF algorithm fits a vector-valued transfer function F (s)
of length NF to a number of partial fractions

F (s) ≈
K∑
k=1

Rk
s− ak

+D + sE, (1)

where s is the Laplace variable, the Rk are the residues, the
ak are the poles, and D and E are optional terms describing
the asymptotic behavior of the transfer function. The residues
and poles are either real-valued, or come in complex conjugate
pairs. Stability is guaranteed if <(ak) < 0 for all k [5].

As the identification of the poles in the least squares sense
is a non-linear problem, (1) is first rewritten as:

F (s) =
p(s)

σ(s)
=

∑K
k=1

rk
s−qk + d+ se∑K

k=1
r̂k
s−qk + d̂

, (2)

The qk defined here are called starting poles, as they are the
starting point of the SK iteration scheme. In the relaxed version
of VF [6], d̂ is a free variable, otherwise it is set to 1.

The SK iteration is now introduced in the following manner.
The linearized system σ(s)F (s) = p(s) is solved in a least
squares sense for r̂k, d̂ and (superfluously) rk, d and e. As
σ(s) and p(s) share the same poles qk, the only remaining
poles of F (s) are the zeros of σ(s). These can be computed
by solving a suitable eigenvalue problem [6]. The new poles
are then used as the starting poles for the next iteration. This
process is repeated until the final poles ak are obtained.

Based on these poles, the residues Rk can then be identified
by solving (1).

B. Bayesian approach

In the LBVF framework, both linear systems above are
solved using Bayesian linear regression [11], and uncertainty
is propagated from r̂k and d̂ to the poles by means of sampling.

Suppose we have a number of data points (si, yi) for i ∈
{1, ..., N}, distributed as a Gaussian around F (s):

P
(
yi
∣∣F (si)

)
∼ N

(
yi

∣∣∣F (si), σ
2I
)
. (3)

If we write the linear system used to arrive at r̂k and d̂ as
Ax = b, where x contains the residues r̂k and d̂ to be found,
and b contains a linear combination of the yi in vectorized
form (see [7]), then b is also distributed as in (3), with Ax as
mean. Since σ2 is a priori unknown, it is treated as a (nuisance)
random variable.
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A conjugate prior can then be formulated as the product of
a Gaussian and an Inverse-Gamma distribution:

P
(
x, σ2

)
∼ N

(
x

∣∣∣∣x0, σ2Λ0

−1
)

IG
(
σ2
∣∣α0, β0

)
. (4)

Here, x0, Λ0, α0 and β0 are prior parameters, either de-
termined by prior information, or set to zero to apply an
uninformative (but improper) Jeffrey’s prior. The posterior
distribution of x, after marginalizing σ2, becomes a Student
T -distribution:

P
(
x
∣∣b) = t2αf

(
x

∣∣∣∣∣xf ,
(
αf
βf

Λf

)−1
)
, (5)

where the parameters are calculated as

Λf =Λ0 +A
T
A,

xf =Λf
−1
(

Λ0x0 +A
T
b

)
,

αf =α0 +
NNF

2
,

βf =β0 +
b
T
b− xfTΛfxf + x0

TΛ0x0
2

. (6)

The sampling of the residues from a Bayesian solution to (1)
with fixed poles is very analogous, though matrix-variate. The
equivalent of (3) is now a matrix normal distribution.

P
(
B
∣∣∣AX) ∼MNN,NF

(
B
∣∣∣AX, I,Σ) , (7)

where row i of B contains yi and row k of X contains Rk.
For more information on this linear system, see [7].

After a similar procedure as the one leading to (5), the
posterior distribution of X becomes a matrix-T -distribution:

TK,NF

(
X

∣∣∣∣νf −NF + 1, Xf ,Λf
−1
, Vf

)
, (8)

in which

Λf =

(
Λ0 +A

T
A

)
,

Xf =Λf
−1
(

Λ0X0 +A
T
B

)
,

Vf =V0 +B
T
B −Xf

T
Λf Xf +X0

T
Λ0X0,

νf =ν0 +N. (9)

In this, X0, Λ0, V0 and ν0 are prior parameters, which again
can be set according to prior information, or set to zero to
apply an uninformative prior. In this paper, the uninformative
priors are adopted.

Drawing samples from the LBVF model outlined above now
occurs as follows. Unfortunately, it is not analytically possible
to propagate (5) to the poles, as their calculation involves an
eigenvalue problem. As a workaround, samples of r̂k and d̂
are drawn from (5). From each such sample, a set of poles is
then calculated, which constitutes an empirical approximation
of the poles’ posterior distribution. For each of these pole
sets, samples from (8) are then drawn to obtain several sets of
residues. Each pair of pole set/residue set drawn in this way
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Figure 1. Flowchart of the proposed AFS strategy.

forms a rational model according to (1). Such models, denoted
F
j

LBVF(s), can be interpreted as samples from the posterior
distribution of fits to the data.

Another outcome of the LBVF framework is the analytic
form for the marginal likelihood of the data under the pole
relocation system:

p
(
b
)

= (2π)
−N

2

√√√√√
∣∣∣Λ0

∣∣∣∣∣∣Λf ∣∣∣
βα0
0

β
αf

f

Γ (αf )

Γ(α0)
, (10)

using the parameters in (6). It can be interpreted as a measure
of how likely it is that (2) could have produced the data. As
such, it can be used as a measure of the quality of the starting
poles and their number. This then offers an intrinsic way to
evaluate how many poles are needed for a good fit to the data,
where there were no such means in classical VF.

III. PROPOSED AFS STRATEGY

The sampled models F
j

LBVF(s) introduced above can now
be used to construct a measure of uncertainty as a function of
frequency, which would naturally form the basis of an adaptive
frequency sampling scheme. One way to do this is to calculate
the standard deviation of the F

j

LBVF(s) at any frequency. It
is beneficial, however, to consider LBVF models of different
orders, as the model is conditioned on the starting poles, and
would otherwise suffer from overconfidence. As models of
different orders do not necessarily possess the same quality,
they are combined using their marginal likelihoods (10) as
weights, to calculate a weighted standard deviation. To encour-
age exploration and to avoid sampling where frequency points
are already evaluated, a small Gaussian penalty is added to this
weighted standard deviation to finally obtain a fully fledged
uncertainty measure.

Fig. 1 lays out the proposed adaptive sampling scheme.
Firstly, a small number (here: four) of initial data points
are evaluated, spread equidistantly over the desired frequency
range. Secondly, LBVF models of up to four different orders
are built, and a large number of samples (here: 500) are
drawn from each of them. Thirdly, these samples are used
to construct the uncertainty measure detailed above. Then,
if this uncertainty is below a chosen threshold, the model
with the highest marginal likelihood is accepted as a suitable
rational model for the transfer function. If the threshold is
exceeded, the frequency point where the uncertainty is highest
is selected as the next to evaluate. After this evaluation, new
LBVF models are built, the uncertainty is recalculated, and so
on.
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Figure 2. The first step in the adaptive sampling scheme, after four initial
simulations, for the S11 parameter.
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Figure 3. The third step in the adaptive sampling scheme, for the S11

parameter.

In contrast to classical AFS schemes [1]–[4], the proposed
AFS scheme does not merely rely on disagreement between
models, but also and most importantly, where individual mod-
els are uncertain in their interpolation. This avoids premature
halting of the algorithm when several models are uncertain but
agree in their mean prediction. This added stability usually
outweighs the added computational cost, especially so when
the underlying electromagnetic simulation is expensive.

IV. EXAMPLE

To illustrate the process of the proposed AFS scheme, it is
now applied to the example of a two-port hairpin filter [12].
Some of the steps in the AFS process are shown in Figs. 2-
4. Note that this happens simultaneously for all elements
of the transfer function matrix, with priority given to the
diagonal elements’ uncertainty. Only the element with the
highest uncertainty determines the next evaluation point. The
previously simulated points are portrayed as black crosses,
while the LBVF samples F

j

LBVF(s) are shown in shades of red,
proportional to their respective models’ marginal likelihood.
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Figure 4. The fifth step in the adaptive sampling scheme, for the S11

parameter.
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Figure 5. The final fit to the data, after 12 simulations in total. The actual
simulated S parameters are shown in blue, while the fit is shown as a black
dashed line. The evaluated points are rendered as blue crosses.

The upper plots show the uncertainty measure in green. An
arrow shows the next point to be evaluated based on this
uncertainty.

After 12 evaluations, the threshold (0.01) on the uncertainty
is no longer surpassed, and the sampling scheme ends. The
highest order model (with 11 poles) is chosen to represent the
transfer function, see Figs. 5 and 6. Its mean can serve as a
traditional macromodel. In Fig. 7, the evolution of the best
mean model is shown.

With respect to the transfer function simulated in 1001
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Figure 6. Smith charts of the final fit to the data, for the S11 parameter
(top) and the S21 parameter (bottom). Colors are as in Fig. 5.
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Figure 7. Progression of the mean of the model with the highest marginal
likelihood at each step of the AFS scheme, for the S11 parameter (top) and
the S21 parameter (bottom). Evaluated points are shown as black dots.

frequency points, the root mean square error (RMSE) and
maximum absolute error of the best mean fit also drop below
−60 dB, to −263 dB and −246 dB, respectively. On a server
node with a Quad-Core AMD Opteron Processor (2 GHz) and
31.4 GiB DDR2 RAM, the total time spent building the LBVF
uncertainty measure is 64.7 s

V. CONCLUSION

This paper introduces a Bayesian approach to the classical
Vector Fitting method, termed LBVF. By sampling from the
posterior distribution of these LBVF models, an intrinsic
model uncertainty can be formulated. This uncertainty in
turn forms the basis for an adaptive frequency sampling
scheme, wherein simulations are carried out sequentially, at
the frequencies where the uncertainty is maximal. As such,
a reliable macromodel of the simulated transfer function is
obtained with as few simulations as possible.

The AFS scheme is showcased by applying it to the
illustrative example of a hairpin filter. Because the proposed
scheme automatically focuses the sampling in the region of the
resonance, a reliable macromodel is obtained. This establishes
the efficiency of the proposed AFS scheme.
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