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Abstract—Electrocardiogram signals are often used in
medicine. An important aspect of analyzing this data is identi-
fying and classifying the type of beat. This classification is often
done through an automated algorithm. Recent advancements in
neural networks and deep learning have led to high classifica-
tion accuracy. However, adoption of neural network models into
clinical practice is limited due to the black-box nature of the
classification method. In this work, the use of variational auto
encoders to learn human-interpretable encodings for the beat
types is analyzed. It is demonstrated that using this method,
an interpretable and explainable representation of normal and
paced beats can be achieved with neural networks.

Keywords-interpretable model; ECG beat classification; deep
learning; disentangled variational auto encoder;

I. INTRODUCTION

Electrocardiogram (ECG) measurements are used

throughout all branches of medicine. An important step

in interpreting the ECG data is detecting the beats and

subsequently classifying each beat per type. As the

number of beats to classify can be high, and human-

based classification is a time-consuming task, automated

approaches for beat classification have been investigated.

Many powerful machine learning approaches have been

proposed, including recent advancements in neural networks

and deep learning techniques [1], [2], [3]. However, the

adoption of such neural network models into clinical

practice is restricted by the lack of model interpretability.

This model interpretability by human experts is crucial in

medicine to ensure trustworthiness of the results [4].
A straightforward approach for creating an interpretable

machine learning model is building a standard rule-based

classifier. Yet, with this approach, the improved modeling

capabilities of neural network methods cannot be exploited.
To reduce the complexity of neural network models, and

hence improve their interpretation, dimensionality reduction

techniques such as auto encoder (AE) models have been

proposed. These models reduce the complexity by forcing

the model to use a lower-dimensional embedding of the input

data. Nevertheless, there can still be complex interactions

across individual dimensions of the embedding, also known

as channels, leading to further difficulties in interpretation

of the model decision.
To disentangle such interactions and further reduce the

complexity of the embedding, disentangled variational auto

encoders (β-VAE) were introduced [5]. These models are

capable of learning disentangled generative embeddings by

forcing the model to represent the information in as few

dimensions as possible, while using a probabilistic interpre-

tation of the embedding. During training, a generative model

is created that allows analysts to measure and see the impact

of the position within a specific dimension of the embedding.

In doing so, the reason for a specific model decision can

be traced back to an embedding that has independent and

explainable parameters.

In this work, the use of such a β-VAE is investigated

for creating an interpretable and explainable ECG beat

embedding that can subsequently be used in a classification

system. The method is used to distinguish normal from

paced beats in the MIT BIH arrhythmia dataset [6]. It is

demonstrated that this interpretable embedding can justify

why a beat was classified as normal or paced as the model

learns a characteristic set of base beats.

In section II, the β-VAE is explained. Then, in section III,

the experimental setup is provided and in Section IV the

results are presented and discussed. Finally, conclusions are

made in Section V.

II. VARIATIONAL AUTO-ENCODERS

An AE is an unsupervised deep learning model used for

creating a lower dimensional embedding, also known as

latent representation, of the input data. This embedding is

subsequently used in, among others, classification, detection

or compression algorithms. In recent studies, AE models

were used for classification [7], [8] and compression of ECG

data [9].

A typical AE model consists of two parts: the encoder

and decoder, as shown in Fig. 1. The model is then trained

using standard deep learning algorithms and a loss function

representing the reconstruction loss LR. Auto encoders are

powerful methods to compute an embedding. However,

determining the size of the embedding is not straightforward

and complex interactions across different dimensions can be

created during training.

To get an interpretable embedding, the variational AE

(VAE) model can be used [10]. It transforms regular AE

models into probabilistic methods. The embedding layer of

Fig. 1 is exchanged for two vectors of equal size Zμ and Zσ
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Figure 1: Auto encoder with input dimensionality ns, in-

termediate layer of size ni and embedding of size ne. The

input is represented by X and the reconstructed output is

represented by X ′.

followed by a sampler drawing a random sample from the

distribution N (Zμ, Zσ), as shown in Fig. 2. This random

sample is then used by the decoder part. The decoder of

a VAE is also known as a generator as this part of the

model can generate new samples from the input distribution

X given a sample from the embedding.
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Figure 2: Variational Autoencoder with similar parameters

as Fig. 1. The sampler draws a sample from N (Zμ, Zσ).

During training, independence and interpretability of the

embedding dimensions is encouraged by the addition of the

KL-divergence DKL to the loss function of the model. It

is computed between N (Zμi
, Zσi

) and the standard nor-

mal N (0, 1) for each dimension i of the embedding. This

encourages the embedding to consist of independent and

standard normally distributed dimensions. The effect of this

is enhanced in β-VAE by the addition of a hyperparameter

β resulting in loss = LR + βDKL. This hyperparameter

balances the latent embedding capacity, also known as chan-

nel capacity, with the independence and standard normal

distribution constraints [5].

The resulting model is capable of automatic discovery

of independent, interpretable embeddings. More details are

presented in [5], [10].

III. EXPERIMENTAL SETUP

A. Dataset
To analyze the proposed β-VAE method for creating an

interpretable embedding, and compare it against normal AE,

the MIT-BIH Arrhythmia dataset [6] is used. All patients

with paced beats are included and an equal amount of

patients with normal beats are added. To accurately test the

capabilities of the models, the data is split in a separate

training and test set. The patient identifiers for each set are

given in Table I.

Table I: Distribution of patients across train and test set.

normal paced
train 101, 106 102, 104
test 103, 105 107, 217

The annotations included in the database are used to detect

and categorize the beats. Only normal and paced beats are

included in the experiment.
The ECG signal is passed through a fifth-order Butter-

worth bandpass filter with lower cutoff frequency of 1Hz

and upper cutoff frequency of 60Hz for mild noise removal.

The epochs of data have a duration of 1 second, sampled at

60Hz, with the beat centered in the epoch.
Then, the signal is normalized between [−1, 1] and the

center 0.5 seconds of data is extracted. This results in 30

samples per epoch (=ns). Examples of the resulting epochs

are shown in Fig. 3.
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(d) Paced beat - test.

Figure 3: Random samples form train and test dataset used

in this analysis. There is a visual and interpretable difference

between the beats.

B. Modeling
Both the β-VAE as the AE model are constructed with

an embedding size ne of 10 nodes. The intermediate layer
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has size ni of 20 nodes. All dense layers have linear

activation functions. Each model is trained for 50 epochs

on batches containing 128 samples and is optimized using

the AdaDelta [11] optimizer. The root-mean-squared-error

is used to represent the reconstruction loss LR.

IV. RESULTS AND DISCUSSION

The β-VAE model aims to summarize each dimension

of the embedding with an independent standard normal

distribution. This is shown in Fig. 4 where the standard

deviation across the embedding for the train and test set is

shown. Only two dimensions of the embedding are not close

to the standard normal. In β-VAE models, these dimensions

encode the information while the others have an insignificant

contribution to the output of the decoder. Fig. 4 also shows

the standard deviation of the embedding for the AE model.

There is no pattern and the contributions of the separate

input dimensions cannot be extracted or interpreted from

the standard deviation for traditional AE models.
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(a) Training set.
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(b) Test set.

Figure 4: Standard deviation of the embedding, evaluated

on the train and test dataset. The β-VAE model aims for an

independent standard normal distribution in each dimension.

The position of beat types within the embedding can be

visualized as shown in Fig. 5 where two random dimensions

are chosen for the AE model (Fig. 5a) and the significant

dimensions are chosen for the β-VAE model (Fig. 5b).

(a) AE model.

(b) β-VAE model.

Figure 5: Learned embedding of the models using the test

dataset. Both models are able to form separate clouds for

normal and paced beats.

Both models are able to create separate clouds for the

normal and paced beats. The difference between the models

is in the interpretation of the position within the embedding.

This can be analyzed by perturbing each dimension individ-

ually as shown in Fig. 6 for two random dimensions of the

AE model. The resulting decoded epochs consist of many

peaks and valleys and no longer contain a recognizable beat

pattern. No interpretation can be linked with any dimension

as the embedding is a complex combination of all 10

dimensions and only makes sense at very specific locations.

Because of this, the AE model cannot be considered a

generative model. Changes in the embedding do not always

lead to valid samples from the original input distribution X .

When this experiment is repeated for the two significant
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(a) Normal beat perturbed in dimension 4.
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(b) Normal beat perturbed in dimension 7.
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(c) Paced beat perturbed in dimension 4.
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(d) Paced beat perturbed in dimension 4.

Figure 6: Perturbing the embedding of an AE model. Perturbing only one dimension generates unrecognizable patterns.

Hence, the position within the embedding is not interpretable by human experts.

dimensions of the β-VAE model, the results are different, as

shown in Fig 7. Now, perturbing one of the dimensions leads

to a smooth transition with identifiable beat patterns. When

comparing the resulting decoded version with the random

samples of the database in Fig. 3, it is clear that distinct beat

shapes are being learned as base for the embedding. The two

dimensions now encode a physical shape of the beat and can

be changed independently. Any beat can be represented as

a combination of these base beats in a learned beat space.

Another useful feature of the β-VAE is the ability to

automatically learn the amount of required dimensions for

the embedding. When the embedding is perturbed in one of

the dimensions close to the independent standard normal,

the decoded output does not change. This is shown in Fig. 8

where a random insignificant dimension of the embedding

is perturbed. From this, it is clear that the decoder model

does not take into account these dimensions and that the

embedding does not need the full ten embedding nodes ne

to model the problem as two are sufficient.

With these two dimensions, the entire beat space can be

visualized as shown in Fig. 9 where the decoder is evaluated

with embeddings at the four corners of the embedding space.

Each beat can be represented as a smooth transition within

this beat space and the position within this beat space

indicates the prominence of specific beat features.

Even with this simple neural network model, the proposed

method is able to learn and extract an independent, inter-

pretable and explainable embedding. The embedding uses

the minimal amount of dimensions required to model the

beats and is made up of several characteristic beat types.

In future work, the proposed methodology can be combined

with a classification layer as demonstrated in literature [7],
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(a) Normal beat perturbed in dimension 0.
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(b) Normal beat perturbed in dimension 9.
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(c) Paced beat perturbed in dimension 0.

0.0 0.1 0.2 0.3 0.4 0.5
[s]

−2

−1

0

1

2

offset = -2.00

0.0 0.1 0.2 0.3 0.4 0.5
[s]

offset = -1.00

0.0 0.1 0.2 0.3 0.4 0.5
[s]

offset = 0.00

0.0 0.1 0.2 0.3 0.4 0.5
[s]

offset = 1.00

0.0 0.1 0.2 0.3 0.4 0.5
[s]

offset = 2.00
original
adjusted

(d) Paced beat perturbed in dimension 9.

Figure 7: Perturbing the embedding of normal and paced beats using a β-VAE. An interpretable evolution of the beat can

be seen. Human experts can interpret and analyze the physical meaning of the position withing the embedding.

[8] to create an interpretable and explainable beat classifier.

In addition, the model can be extended with state-of-the-art

deep learning architectures and trained with multiple beat

types.

V. CONCLUSION

ECG beat classification is an important aspect of ECG

analysis and is used in various branches of medicine. State-

of-the-art neural network and deep learning models are

capable of achieving a high classification accuracy. However,

there is no human interpretable explanation for the classi-

fication decision of the model. By extending deep learning

models to include a β-VAE embedding as illustrated in this

work, representative beat patterns can be identified leading

to interpretable, explainable and independent embedding

dimensions. The resulting neural network model is no longer

black-box and beats can be represented as combinations of

learned independent base beats.
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