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ABSTRACT
Detailed knowledge about the modal model is essential to

enhance the NVH behavior of (rotating) machines. To have more
realistic insight in the modal behavior of the machines, obser-
vation of modal parameters must be extended to a significant
amount of time, in which all the significant operating conditions
of the turbine can be investigated, together with the transition
events from one operating condition to another. To allow the pro-
cessing of a large amount of data, automated OMA techniques
are used: once frequency and damping values can be character-
ized for the important resonances, it becomes possible to gain
insights in their changes. This paper will focus on processing
experimental data of an offshore wind turbine gearbox and in-
vestigate the changes in resonance frequency and damping over
time.

NOMENCLATURE
NVH Noise, Vibration and Harshness
OMA Operational Modal Analysis
SCADA Supervisory Control and Data Acquisition

∗Address all correspondence to this author.

INTRODUCTION
The susceptibility of rotating machineries to structural vi-

brations generating tonalities is a main design issue in this field.
Modal parameters (i.e. eigenfrequencies, damping ratios, mode
shapes and modal scaling factors) are thus a core design driver in
the development of new rotating machines. The wind turbine ap-
plication is a prime example. New turbines are only allowed on
the market if stringent noise emission levels are met. The experi-
mental verification of modal parameters forms as such an essen-
tial part of this process, especially for allowing model validation.
Adequate dynamic design guarantees the safety and reliability
of the wind turbine structure [1]. A prime parameters for tonal-
ity design is damping. The boundary conditions realized by the
elastomer bushings supporting the gearbox influence the damp-
ing values and are amplitude dependent. The modal parameters
can change depending on the (rotating) speed of the structure or
the parts. As such, it is important to experimentally verify the
modal design values during all operating conditions the machine
will run at, i.e. around the different operating points.

Operational Modal Analysis (OMA) targets the characteri-
zation of structures when exposed to environmental excitations.
The environmental loading is used as excitation source, rather
than applying known excitation forces. As such OMA is a
powerful approach: it allows to extract the modal parameters
from the dynamic response of the structure while it is operational
and exposed to its normal operational forces. The latter are
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not measured and assumed to have a white noise character.
This method is however based on several assumptions that are
typically not fulfilled for rotating machines. One of the key
issues that make traditional OMA approaches unsuitable for
rotating machines is the presence of strong harmonics masking
the modal content. Given that inputs forces are unmeasured and
not of white noise nature, the results of the parameters estima-
tion become sensitive to the excitation acting on the structure.
Harmonics can be misinterpreted to be resonances with very low
damping. Indeed, the non-white noise input signal will result in
an output of the parameter estimation that is a combination of
structural modes and harmonic components already present into
the input signal [2, 3]. This strong influence of the harmonics
is particularly important for the wind energy domain. Wind
turbines operate in a continuously variable environment that
result in highly dependent on the operating conditions at the site.
These variable conditions induce important mechanical stresses
in the different drivetrain subcomponents. In addition, the
current trend towards increased torque density of the drivelines
linked to the increase of turbine size to produce more energy
has caused a significant increase in the drivetrain loads. These
are amongst others playing a role in premature component
failures, since not all aspects of the dynamics of the machine are
fully understood [4]. For better understanding these dynamics
the extraction of the modal parameters while the turbine is
in operation becomes more and more important. The current
design process in industry comprises testing at component-level
and full-scale machine testing. Both of these tests are performed
in the laboratory and in the field. In general, the duration of
these tests is short. The test tries to catch only the specific
operating conditions targeted. What is however not present
in the current testing approach is continuous data acquisition
and processing in order to gain insights in the behav- ior of the
machines during their overall lifetime. This requires insights in
their behavior for all important operating conditions [5]. This
lack of detailed insights on the importance of certain operating
conditions on the behavior of the machines makes the solution
of the tonality challenges cumbersome and thus results in a not
efficiently optimized machine. By moving towards continuous
modal analysis, the industry could target a new kind of design
process centered around field data. The decisions on how to
improve simulation models and turbine designs could then be
taken based on what can be learnt from the information acquired
in the field. Rather than looking at a single machine, several
machines that are already operating in the field could be used
to gain insights in the dynamic response during all important
operating conditions. The main requirement to achieve this
objective is an automated modal analysis algorithm capable of
continuously and autonomously processing the streams of data.

The research discussed in this paper targets this continuous
identification of the modal parameters of wind turbine drive-

trains. These are one of the main important drivers in tonality
issues and critical for the dynamic behavior of the overall ma-
chine.

THEORETICAL BACKGROUND
Operational Modal Analysis

OMA techniques allow to obtain the modal model of sys-
tems without requiring knowledge about the forces (e.g. wind,
traffic) exciting it. As no artificial excitation sources need
to present, this methodology has as big advantage that it has
the potential to continuously characterize the dynamic behav-
ior of structures. Moreover, it allows to perform the modal
testing in the real operating and boundary conditions of the
structure. OMA algorithms are based on several assumptions,
among other that the excitation force has a white noise spectrum.
In general, this assumption does however not hold true. Dif-
ferent OMA algorithms have been developed in literature. In
this work, a polyreference Least-Square Complex Frequency-
Domain (pLSCF) estimator was used. The full theoretical back-
ground behind this algorithm can be found in [6]. It is a fre-
quency domain estimator that requires the output spectra of the
system as primary data. If it is assumed that the input forces are
white noise, it is possible to model these spectra in a similar way
as Frequency Response Functions (FRFs) H(ω) are modeled in
Experimental Modal Analysis (EMA). This will be demonstrated
in the discussion which follows. For EMA, the FRFs can be writ-
ten as follows:

H(ω) =
n

∑
i=1

{vi}
〈
lT
i
〉

jω−λi
+
{v∗i }

〈
lH
i
〉

jω−λ ∗i
(1)

In this equation, n is the number of estimated complex pole
pairs (i.e. the model order), vi is the mode shape vector for mode
i, li are the modal participation factors and λi are the poles of the
system. Furthermore, * is denoted for the complex conjugate, H

for the Hermitian transpose of a matrix and T for the transpose
of a matrix. The resonance frequencies (ωi) and the damping
ratios (ξi) of the structure can then readily be obtained from the
estimated poles:

λi,λ
∗
i = ξiωi± j

√
1−ξ 2

i ωi (2)

To make the transition towards an OMA framework, it
is needed to investigate the relation between the input spectra
[Suu(ω)] and the output spectra [Syy(ω)] for a system with trans-
fer function H(ω):
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[SYY ] = [H(ω)][SUU (ω)][H(ω)]H (3)

In case of OMA, the input spectra are thefore modeled as a
white noise excitation, meaning that [Suu(ω)] = [Suu]. By com-
bining Equations 1 and 3, the following modal decomposition is
obtained:

SYY (ω) =
n

∑
i=1

{vi}〈gi〉
jω−λi

+
{v∗i }〈g∗i 〉
jω−λ ∗i

+
{gi}〈vi〉
− jω−λi

+
{g∗i }〈v∗i 〉
jω−λ ∗i

(4)
In this Equation, gi are the operational reference factors.

These are the equivalent of modal participation factors in case
of OMA. The pLSCF estimator then uses a right matrix formu-
lation as parametric model:

[H(ω)] = [B(ω)][A(ω)]−1 (5)

From Equation 4, it can be seen that the number of estimated
pole pairs n needs to be imposed. As this is not known before-
hand, it is common practice to use an iterative procedure, where
the model order is increased with each iteration. A combination
of mathematical and physical poles will then be obtained from a
certain point on, as the modal order will be over-specified. A sta-
bilisation diagram that shows the stability of the extracted modal
parameters as a function of the model order is then classically
used afterwards to help the analyst to distinguish between phys-
ical and spurious modes [7].

Cepstrum editing procedure
As already shown, OMA formulations are based on the

assumption that the excitation forces have a white noise spec-
trum in the frequency band of interest. This hypothesis implies
that the excitation is stochastic, both in time and space. This
assumption will however be violated in several applications, for
example when processing vibration data of rotating machines.
In this case, the rotating components introduce deterministic
harmonic content in the spectra. This paper will focus on how to
deal with this content. In literature, several techniques are avail-
able [8–10]. The majority of these methods however assume
that the harmonics are stationary (i.e. constant in frequency and
amplitude). This limits their applicability in the field of rotating
machinery, as in this case the harmonics are non-stationar due to
speed and load fluctuations. The former moreover results into
the fact that the harmonics are smeared in broad frequency bands.

In this work, a methodology based on cepstrum editing is
adopted [10]. In this case, the vibration data is pre-processed
by filtering the deterministic harmonic contents from the mea-
sured data, significantly reducing their influence. Cepstrum edit-
ing consists of first transforming the time domain signal into the
quefrency domain by means of a double Fourier transform:

Cc(τ) = F−1log(F (X(t))) = F−1ln(A( f ))+ jφ( f ) (6)

In this Equation, X(t) is the time domain signal, A(f) and φ( f )
are respectively the amplitude and the phase of the signal in the
frequency domain. A common practice is to do the filtering pro-
cedure by only editing the amplitude. To this end, the phase is
set to zero and the following formulation is obtained:

Cr(τ) = F−1ln(A( f )) (7)

This ensures that is possible to go back to the time domain.
The strength of the cepstrum for signal editing is based on the
observation that the relevant modal content is based at low
quefrencies, whereas the harmonic content is concentrated at
higher quefrency values. Moreover, it was observed that setting
the amplitude of a family of rhamonics to zero, automatically
smooths the corresponding family of harmonics in the time
domain. These observations justify applying a short-pass lifter
in the quefrency domain, as this allows to obtain a time domain
signal in which the influence of the harmonics is greatly reduced.

It has however been shown that the cepstral lifter works best
for discrete peaks in the quefrency domain. For rotating systems,
these peaks will however smear due to speed fluctuations. To
this end, the cepstral editing procedure does not directly take
place on the measured vibration signals. The raw data is rather
first resampled in the angular domain [11], allowing to obtain
discrete peaks of rhamonics in the cepstrum of the resampled
time signal. A short-pass lifter is then used. This resampling
procedure however alters the resonance phenomena of the
structure, meaning that it is essential to bring the data back from
the angular domain to the time domain before performing the
modal parameter estimation.

In this work, there is opted to not do the angular resampling
in case of standstill data, as in this case the harmonics are much
more narrow by nature. In the discussion that follows, the differ-
ent implement methodologies will now be validated by process-
ing vibration data of an offshore wind turbine.
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METHODOLOGY
Automation of the procedure

To achieve a methodology allowing to perform OMA on
continuous time series the two previously discussed methods are
combined. The automation of the modal parameter estimator can
be divided in two sub-steps. As a first step, the p-LSCF algorithm
is automated. This allows to eliminate the necessity for manual
interaction by the analyst. A clustering method is used to au-
tonomously interpret the stabilization diagram resulting from the
modal estimation procedure. The automated approach groups
poles that show stable characteristics to allow the extraction of
physical poles based on the statistical properties of each cluster.
In a second step the modal model estimation algorithm is com-
bined with an automatic tracking algorithm. This tracking step
allows to unveil the evolution of the modal parameters within
multiple datasets over a long period of time [12]. To allow track-
ing the modes of each dataset need to be compared. This is done
by means of the MAC and poles values to indicate to which ex-
tent the estimates show coherence with regard to mode shape
(represented by the MAC value) and resonance frequency and
damping values. This paper uses a fully automatic procedure
that does not require the definition of the reference dataset. The
cut-off quefrency of the cepstrum editing procedure is selected
using an automatic selection algorithm. This cutoff-quefrency
is a crucial parameter for the cepstrum analysis, since it deter-
mines the time constant of the exponential window applied to
the signal in the quefrency domain. To choose this quefrency the
locations and strength of the harmonics present in the signal are
used. The selection is based on achieving a maximum reduction
of the energy present in the harmonics. Modal analysis can use
different input signal types. Where order-based modal analysis
needs run-up data, the OMA methods prefer steady state mea-
surements. Thus, an automated method is necessary to distin-
guish between on the one hand steady state operating conditions
(turbine in idling conditions or when it is running at stable speed)
and on the other hand run-up/coast-down events. The introduc-
tion of an algorithm able to automatically detect these events in
the signal allows to complete the block scheme represented in
the diagram in Figure 1. To guarantee that only qualitative data
is used an additional step is done: data validation. Such valida-
tion is necessary as it allows to assess the quality of the input sig-
nals and allows to avoid corrupted results from processing bad-
quality signals, such as for example caused by the detachment of
the sensor from the measured structure.

Extensive prior research showed the validity of our auto-
matic modal parameter estimation [13]. This paper focusses
on the missing step to make this analysis run continuously on
long-term data is the introduction of this automated event clas-
sification algorithm before processing the data. The methodol-
ogy investigated in this work makes use of a machine learning
approach that is based on the fact that turbine run-up and coast-
down events are controlled events. It is thus expected that a simi-

lar pattern in speed and power can be seen across several of these
events. Based on this observation, machine learning algorithms
can be used in the following way: standard run-up and coast-
down events are learned such that sub- sequent similar repeti-
tions can be detected automatically. Since in this work the focus
is on the use of cepstrum-based preprocessing of the data to re-
duce the influence of the harmonics from steady state data, at
this stage the detected events are simply re- moved from the set
of data that will be analyzed. However, as it can be seen in figure
1, within the steady state data a further distinction must be made
between stand still data (rotating speed approaching zero value)
and rotating data. A threshold value on the average speed is then
introduced in order to distinguish these two cases.

FIGURE 1: BLOCK DIAGRAM FOR THE PROCEDURE
IMPLEMENTED TO CONTINUOUSLY TRACK THE

MODAL PARAMETERS.

Use of big data analysis and tailored database
Wind turbines are subjected to continuous changes in wind,

meaning that they do not always operate at nominal conditions.
Furthermore, several transient effects can occur during the
lifetime of the turbine (e.g. run-up, coast-down, emergency
stop due to grid loss, ...). These transient effects can have a
major impact on the lifetime of the turbine due to unfavourable
loading, which is why these load cases often govern the design
of the machine. During the design of machines, it is important to
observe how they globally respond to different load cases. This
will allow to validate (and if needed update) simulation models
and to overall obtain more insights in the machine dynamics. For
wind turbines, the great variability in the operating conditions is
however a major challenge. In order to get representative modal
behavior in all different operating conditions, it is therefore
needed to move towards big data methodologies. This transition
however requires to have automatic approaches available. In
addition, this huge amount of data results in long computational
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times, meaning that it is also crucial to have a system available
to deal with this big amount of data. Our integrated approach
comprises three main steps [14]. 1) Data-acquisition system
which allows to capture all the data within one consistent dataset.
2) Scalable data-warehouse in order to deal with a big amount of
non-equally sampled data : a no-SQL database is therefore used
to tackle problems of scalability and to increase the reliability of
the overall system. 3) Parallel computing in order to reduce the
computational time. No-SQL architectures distribute the data
across the cluster; it is possible to couple it with parallelized
querying and data analysis. This architecture permits to combine
machine learning algorithms and advanced signal processing
techniques. This allows to obtain new insights in the modal
behavior of the machine in all operating conditions. Moreover,
it opens the door to use data-driven prognostic techniques to
predict the way it will respond in the future or in other operating
conditions. These data-driven models have the potential to sig-
nificantly improve new prototypes based on combining physical
system knowledge and long-term experimental information.

Results
In order to validate the implemented procedure, a period of

time in which several run-up and coast-down events are present
has been selected. This allows to test the automatic event de-
tection and to have a sufficient amount of data at different op-
erating conditions to compare. By means of the event detec-
tion algorithm used to identify presence of run-up or coast-down
in the signal, the events have been eliminated from the set of
data analyzed. The remaining datasets have been divided in sub-
signals and automatically clustered based on the operating con-
dition of the machine, using as discriminant the average value of
the speed. The variation of the speed is also considered in a next
step for the post processing of the data.
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FIGURE 2: RESULTS OF THE TRACKING PROCEDURE
OVER THREE DIFFERENT OPERATING CONDITIONS.

The output of the tracking procedure is shown in Figure 2.
The top graph of Figure 2 represent the evolution of the reso-
nance frequency as a function of time, whereas the bottom graph
represents the average speed of the machine over time. It should
be noted that all values are normalized for confidentiality rea-
sons. Based on these tracking results, a further processing of
the results (hyper-modeling) can show correlations between the
available operational parameters in order to get a better idea of
which parameters play a role in the operational modal behavior
of the machine. In case of wind turbines, these variables are rep-
resented by SCADA (Supervisory control and data acquisition)
data: rotor speed, pitch and yaw angle, temperature, wind speed..
These data are considered to be representative for the operating
condition of the machine. In this work, the hyper-modeling ap-
proach has been used only with respect to the rotor speed, ob-
taining the results shown in Figure 3 and 4.

Figures 3 and 4 show the dependence of the frequency and
the damping of each resonance on the speed. Looking at the
blue lines in the first subplot (frequency/damping) and in the
second one (measured speed), it can be notice that a correlation
may exist between the estimates and the rotor speed: for both
the frequency and the damping, the estimates show higher
variability at lower rotor speed values. To investigate whether an
explicit correlation exist within the two parameters (frequency
as a function of rotor speed and damping as a function of
rotor speed), a hyper-model is used to predict the rotor speed
(yellow line in the middle subplot) based on frequency/damping
estimates. It can however been seen from the red line in the last
subplot that the error between the measured and modeled speed
is substantial. This validates the correct working of the cepstral
lifter, as there would be direct correlations between the speed
and the extracted poles in case harmonics were fitted during the
modal parameter estimation.

FIGURE 3: MODEL OF THE ROTOR SPEED BASED ON
THE FREQUENCY OF EACH RESONANCE.
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FIGURE 4: MODEL OF THE ROTOR SPEED BASED ON
THE DAMPING OF EACH RESONANCE.

This analysis furthermore shows that hyper-modeling is es-
sential to avoid misinterpretation of the results and that rotor
speed alone is not sufficient to gain insight in the influence of
the operating conditions on the modal behavior of a complex
system such a wind turbine drivetrain. Future work will be to
further perform automatic OMA to have longer tracking results
and to include more SCADA data in the hyper-modeling process
in order to further investigate the link between the operating con-
ditions and the modal behavior of the machine.

CONCLUSION
This paper investigated the use of Operational Modal Analy-

sis (OMA) on long-term data of rotating machines. Special focus
was given on how to deal with the harmonic content present in
the signal by using cepstral editing and on how to integrate the
different methodologies within a big data context. Afterwards,
the methodology was demonstrated by processing several hours
of vibration data of an offshore wind turbine autonomously.
Data-driven modeling was then finally used to find correlations
between the estimated modal parameters and the operational set-
tings of the turbine, although this showed that further coupling
with SCADA of the machine is still needed to draw more mean-
ingful conclusions.
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