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A B S T R A C T

Non-intrusive load monitoring methods aim to disaggregate the total power consumption of a household into
individual appliances by analyzing changes in the voltage and current measured at the grid connection point of
the household. The goal is to identify the active appliances, based on their unique fingerprint. Most state-of-the-
art classification algorithms rely on the assumption that all events in the data stream are triggered by known
appliances, which is often not the case. This paper proposes a method capable of detecting previously uni-
dentified appliances in an automated way. For this, appliances represented by their VI trajectory are mapped to a
newly learned feature space created by a siamese neural network such that samples of the same appliance form
tight clusters. Then, clustering is performed by DBSCAN allowing the method to assign appliance samples to
clusters or label them as ‘unidentified’. Benchmarking on PLAID and WHITED shows that an F macro1, -measure of
respectively 0.90 and 0.85 can be obtained for classifying the unidentified appliances as ‘unidentified’.

1. Introduction

In October 2014, EU leaders agreed upon three key targets for the
year 2030 [1]: (1) a reduction of at least 40% cuts in greenhouse gas
emissions, (2) a save of at least 27% share for renewable energy, and (3)
at least 27% improvement in energy efficiency. Energy monitoring
proves a useful aid to reach these targets by providing an accurate,
detailed view of energy consumption. It helps because: (1) if this in-
formation is given to households, studies have shown that they could
save up to 12% of electrical energy and thereby reduce the emissions
[2] (also useful for non-residential buildings [3]), (2) this information
allows us to assess and exploit the flexibility of power consumption,
which in turn is important for demand response systems that are re-
sponsible for an increased penetration of distributed renewable energy
sources, (3) energy monitoring is one major prerequisite for energy
efficiency measures [4].

In order to achieve the required energy monitoring cost-effectively,
i.e., without relying on per-device monitoring equipment, non-intrusive
load monitoring (NILM) provides an elegant solution [5]. NILM iden-
tifies the per-appliance energy consumption by first measuring the ag-
gregated energy trace at a single, centralized point in the home using a
sensor and then disaggregating this power consumption for individual
devices, using machine learning techniques.

Several supervised and unsupervised methods have been developed

to recognise the appliances and to compute the total power consump-
tion [6,7,5]. However, to our knowledge, most classification algorithms
described in the literature can not handle unidentified appliances.
These will be assigned a label and power consumption that corresponds
to the appliance having the most similar features. This paper suggest a
method that is capable of detecting unidentified appliances, which are
labeled as ‘unidentified’. When such an appliance is detected, the user
can be queried for information about the appliance (i.e., the class label).
In this paper, appliances are characterised by their binary VI trajectory
image [8,9], although other representations can also be considered.

The proposed method has a training and a test phase, as shown in
Fig. 1. In the training phase, a new, lower dimensional feature space
where samples of the same appliance are clustered, is computed from
the VI trajectory images by training a siamese neural network. The VI
trajectory images must be paired and labelled respectively as must- or
cannot-links, depending if the images belong to the same class or not.
The transformation does not depend on the appliance label. On the
transformed input, DBSCAN is performed to group samples with similar
feature vectors in the new space. DBSCAN is a state-of-the-art clustering
method that does not require prior knowledge about the amount of
clusters and that is capable of detecting outliers. In the test phase, a VI
trajectory image is transformed to the new feature space. If this point
does not belong to a cluster, it is labelled as ‘unidentified’.

The outline of the paper is as follows: Section 2 describes the related
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work concerning NILM classification algorithms. Section 3 explains the
concept of siamese neural networks and how they can be used to learn a
new feature space. Section 4 explains the DBSCAN clustering algorithm.
Section 5 benchmarks the quality of the clustering, the capability of
detecting unidentified appliances and the generalization property of the
method. Additionally, it also discusses how this method can be used in a
quasi real-time solution. Finally, Section 6 concludes this paper.

2. Related work

A specific application of NILM is appliance detection. Hart [10] was
the first to describe the several steps in this process: (1) measuring the
aggregated power consumption with a sensor attached to the main
power cable, (2) detecting state-transitions of appliances (events) from
the captured data using a robust statistical test [11], (3) describing
transitions using a well-chosen feature vector, e.g., VI trajectories, (4)
recognizing and monitoring each appliance using supervised and un-
supervised methods. It must be noted that for some NILM algorithms,
the event detection is a side effect of the approach, and not a separate
module in the algorithm itself.

Feature definition. After detecting state-transitions of appliances,
these must be described by a well-chosen feature vector. The type of
features depends strongly on the sampling rate of the measurements.
When using low frequency data (⩽1 Hz), the most common features are
the power levels and the ON/OFF durations [12]. A drawback of this
approach is that only energy-intensive appliances can be detected.
When using higher frequency data, it is possible to calculate features
like the harmonics [13] and the frequency components [14] from the
steady-state and transient behaviour of the current and voltage signal,
enabling the algorithm to also detect non energy-intensive appliances.
More recently, the possibility to consider voltage-current (VI) trajec-
tories has also been considered [8,9,15].

The VI trajectory of an appliance is obtained by plotting the voltage
against the current for a defined time period when the appliance is

turned on, see Fig. 2a. It is shown in [15] that manually extracting
features from the VI trajectory can be informative to classify the ap-
pliances. Nevertheless, this is not straightforward. As an alternative, the
VI trajectory can be converted into a binary VI image ( ×n n matrix) by
meshing the VI trajectory, see Fig. 2b. In [8,9], each cell of the mesh is
assigned a binary value that denotes whether or not it is traversed by
the trajectory. Based on this binary VI image, several features can be
extracted to classify different power loads [9]. Even the binary VI image
itself can be used as input for a classifier [8], as will also be the case in
this paper.

In order to distinguish appliances based on their VI trajectories,
measurement devices must be used that are able to sample high fre-
quency data.

Recognizing appliances and monitoring power consumption. Once the
features are extracted, they can be fed into different classification
methods, like support vector machines (SVM) [16,17], neural networks
[18], decision trees [19], or nearest neighbours [20]. For these
methods, labelled training data is necessary. If labels are not present,
unsupervised methods can be used. An overview of these methods is
given in [21].

The majority of the NILM approaches, supervised or unsupervised,
are sensitive to appliance changes in the house, thus require regular re-
training. In this paper, the focus lies on creating a classification algo-
rithm that is able to detect unidentified appliances and is thus resilient
against appliance changes in the house. If an unidentified appliance is
detected, labeling and retraining is requested.

Clustering. In order to detect unidentified appliances, clustering
must be performed. The idea is that samples originating from the same
appliances will appear as clusters in the feature space and samples
originating from unidentified appliances will appear as outliers in-
dicating the need to create a new cluster. The use of clustering methods
has previously been explored in non-intrusive load monitoring. In [10],
a simple clustering algorithm was mentioned where the appliances are
grouped using the active – reactive power (P-Q) plane as feature

Fig. 1. The work flow of the proposed method that is able to detect unidentified appliances.

Fig. 2. The original VI trajectory (left) and the corresponding binary VI image (right).
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representation space. Despite its simplicity, it is incapable of re-
cognizing appliances with overlapping P and Q consumption. In [22],
the P-Q plane is also used for genetic k-means and agglomerative
clustering. This method has problems in distinguishing appliances with
small P and Q consumptions as their steady-state changes tend to cluster
together. In [23], mean-shift clustering is proposed on features that are
extracted from the power signal. The resulting clusters are classified
into different appliance classes.

None of these clustering algorithms exploit their capability to detect
unidentified appliances, and none are capable of clustering on appli-
ance-level with high accuracy. The proposed method uses a novel
clustering work flow to cope with these two shortcomings. Section 3
explains how a higher accuracy can be obtained by learning a new
feature space using siamese neural networks. Section 4 explains how
unidentified appliances can be detected.

3. Siamese neural network

The ability of clustering algorithms to detect small power con-
suming appliances can be improved by adding more features. However,
clustering is sensitive to the curse of dimensionality as it relies on the
computation of a distance function like the Euclidean distance. In a
high-dimensional case, the differences in distance become less ap-
parent, making the clustering method unusable. For clustering to work,
it is thus key to find a low dimensional feature space where the clusters
are well separated. To this end, siamese neural networks can be used.
These are a special kind of neural networks [24].

A siamese network consists of two identical NN, meaning that each
of them has the same architecture, parameter values and weights. As
input, two binary VI images must be given and as label, a binary value
indicating whether or not the images belong to the same class. The
output of the siamese network are two vectors, forming a lower-di-
mensional representation of the two input images. The idea is to learn
the representation in such a way, that the distance between these re-
presentations will be smaller than a given threshold if the two belong to
the same class and larger if not. This leads to the use of the so-called
contrastive loss function:

= × + − × −L y d y d y m d( , ) 1
2

( (1 ) max{ , 0}) (1)

where y is the binary output, d is the distance between the two input
feature vectors, and m is the margin determining when samples are
dissimilar: dissimilar input vectors only contribute to the loss function if
their distance is smaller than the margin.

Siamese networks are ideally suited to find a relationship between
two comparable samples. This is the case in one-shot learning [25],
where classification needs to be done with only one example of each
class or signature verification [26], where the authenticity of a sig-
nature is checked. In this paper, the siamese neural network is used for
dimensionality reduction, like in [27]. This method of dimension re-
duction is different from classical approaches, such as local linear em-
bedding (LLE) and principal component analysis (PCA), as the siamese
neural network learns a function that is capable of consistently mapping
unseen samples to the learned feature space and as the siamese neural
network is not constrained by a simple distance function like the Eu-
clidean distance.

After the training phase, the siamese neural network can be used to
calculate a nout-dimensional representation of new VI binary images.
These are obtained by using the output of just one cNN.

4. DBSCAN

After learning the feature space, unidentified appliances can be
detected by performing clustering. Namely, if a new sample is too
distant from present clusters (representing known appliances), then it is
considered as unidentified.

Density-based spatial clustering of applications with noise
(DBSCAN) is a density-based clustering algorithm: points forming a
cluster will be close together, whereas the outliers will only have re-
latively far away neighbours [28]. The algorithm starts by picking one
random sample out of the dataset. If there are not enough close by
neighbours, then the point will be labeled as an outlier and the process
continues by selecting a new sample. If there are sufficient close by
neighbours, they are all added to the same cluster. The algorithm
continues by iterating over all new added points, if these have sufficient
close by neighbours, these are also added to the same cluster. This
continues until no more samples are added to this cluster. Then a new
unvisited random sample is selected and the process is iterated until all
points belong to a cluster or are labeled as outliers (noise). Three ele-
ments needs to be defined for DBSCAN: (1) the amount of sufficient
close by points, mintPts, (2) the distance function, and (3) the maximal
distance to a close by sample, ∊. These last two points define if a sample
is close by or not.

The advantages of DBSCAN are that the number of clusters does not
need to be specified by the user (unlike, e.g., for K-means clustering),
clusters can be of any shape (not just the circular ones), and outliers are
not forced to belong to a cluster but are identified as such. The algo-
rithm is also robust against an imbalance in the occurrence of samples
from different clusters. DBSCAN is one of the most common clustering
algorithms and was awarded the test of time award at the leading data
mining conference, KDD [29].

In this paper, the transformed input samples are clustered with
DBSCAN. The used distance metric is the Euclidean distance. The
parameters mintPts and ∊ are not trained but heuristically set to re-
spectively 5 and 0.2.

To determine which cluster a test sample belongs to (if any), its
feature vector is first transformed to the calculated lower-dimensional
space. Next, the Euclidean distance is calculated to all core samples and
the minimal distance is selected. If this distance is smaller than
threshold ∊, then the sample belongs to the same cluster as the closest
core sample. Otherwise, it will be assigned the label ‘unidentified’.

5. Results

This section first describes the used datasets in Subsection 5.1 and
specifies the input and architecture of the siamese neural network in
Subsection 5.2. To benchmark the described method on the data, sev-
eral checks must be performed. First, it must be examined if the learned
feature space separates the different classes well, see Subsection 5.3.
Second, the capability of detecting unidentified appliances is tested by
using data of an unidentified appliance as test data, see Subsection 5.4.
Lastly, the generalization property of the method is checked by using
the data from other (unseen) houses as test data, see Subsection 5.5. To
conclude this section, a discussion concerning the time usage of this
algorithm is given in Subsection 5.6.

5.1. Benchmark dataset

The performance of the proposed algorithm is validated on the Plug-
Load Appliance Identification Dataset (PLAID) [30] and the Worldwide
Household and Industry Transient Energy Dataset (WHITED) [31].

• PLAID is a public dataset including sub-metered current and voltage
measurements sampled at 30 kHz for 11 different appliance types.
For each appliance type, at least 38 individual appliances are
available, captured in 55 households. For each appliance, at least 5
start-up events are measured, resulting in a total of 1074 measure-
ments.

• WHITED is a public dataset including sub-metered current and
voltage measurements sampled at 44 kHz for 46 different appliance
types. For each appliance type, 1 to 9 different appliances are
available. For each appliance, 10 start-up events are measured,
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resulting in a total of 1100 measurements. For training and testing
purposes, it is required that at least two different appliances are
measured per type. For 24 appliance types, only one appliance was
available and these are thus omitted. The final number of used ap-
pliances in WHITED is 22, resulting in 860 measurements.

5.2. Input and architecture of siamese neural network

In this paper, the input of the siamese networks consists of pairs of
binary VI trajectory images with size ×n n. In order to obtain the
binary VI images for PLAID and WHITED, the voltage and current are
measured over a time interval of 20 cycles when the appliances reach
steady-state, resulting in respectively 10000 and 17600 samples. The
voltage is plotted against the current and the methodology described in
the related work is used to create binary VI images. Fig. 5 gives ex-
amples of binary VI images for the appliance types present in PLAID.

The architecture of the siamese network is shown in Fig. 3. For the
siamese neural network, the proposed method uses two convolutional
neural network (cNN). cNNs are a type of neural networks (NNs) that
are often used in computer vision because they are highly suitable to
classify images [32]. The used cNN is depicted in Fig. 4 and takes as
input an ×n n binary image. This is transformed by a convolutional
layer which uses 20 filters, each considering regions of ×5 5 pixels.
After the convolutional layer, there is a maximal pooling layer with a
sliding window of ×2 2. This combination of a convolutional layer
followed by a pooling layer is repeated, and finally, a dense layer is
added with nout nodes. In total, five layers are present. The trainable
weights and biases of the network are initialized by sampling from a
Gaussian distribution with zero mean and a standard deviation of 0.05.
The margin m used in the loss function is set to 50. The results are fairly
insensitive to the choice of m.

5.3. Scenario 1

To determine if the learned feature space from the siamese neural
network separates the classes well, the rand index (RI) of the clusters
found by the DBSCAN algorithm is calculated. The RI is a measure of
similarity between two data clusterings X and Y:

=
+

+ + +
RI a b

a b c d (2)

where a and b are respectively the number of pairs of elements that are
in the same/different cluster(s) in both clusterings X and Y, and c and d
are respectively the number of pairs that are in the same cluster for X/Y,
but in a different one for Y/X. Higher values of RI (max. value 1) in-
dicate a better match of clusterings.

Fig. 6a and b show the RI for respectively PLAID and WHITED for
different parameter configurations of the siamese neural network that
learns the representation from binary images of the VI trajectories. The
input size of the VI image ×n n( ) and the dimension nout of the learned
representation are altered. For this, all data samples of the PLAID da-
taset are fed into the siamese neural network to calculate the mapping
function. Increasing nout (for fixed values of n) has little impact on the
RI values. In contrast, changes in the value of n (for fixed values of nout)
have a strong impact. The best RI values for both datasets are obtained
for ⩾n 30 with a maximum of 0.996 for PLAID and 0.879 for WHITED.
The RI value for WHITED is lower than the one for PLAID. A possible
explanation is that the number of appliances is much larger for
WHITED, introducing more chance for confusion. The high RI values
confirm the capability of the siamese neural network to learn a feature
space where the clusters are well separated and confirm the ability of
the DBSCAN algorithm to find these clusters. Fig. 7 shows an example
of the learned three dimensional feature space ( =n 3out for the ease of
visualization) for PLAID and the corresponding clustering. Each axis of

Fig. 3. The architecture of the siamese network.

Fig. 4. The architecture of the cNN that is used in the siamese network.
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the plot represents one element of the neural network’s output vector
with length nout. The label of each cluster is written next to it. A vi-
sualization for WHITED is not given as the number of appliances is too
big to create a clear plot.

To indicate that the method also works for lower frequency data, the
method is benchmarked on subsampled data from PLAID and WHITED.
The original sampling frequency of PLAID can be reduced from 30 kHz
to 15, 3, 1 and 0.5 kHz by selecting respectively 1/2, 1/10, 1/30, 1/60
of the samples. The original frequency of WHITED can be reduced from
44 kHz to 22, 4, 1, and 0.5 kHz by selecting respectively 1/2, 1/11, 1/
44, 1/88 of the samples. Fig. 8 shows the VI trajectories for the fridge
and hairdryer from PLAID for different sampling frequencies. These can
still be separated, although this is more difficult for the human eye
when the data is sampled at 0.5 and 1 kHz. The RI for when the feature
space is learned using different sampling frequencies for PLAID and
WHITED are given in Table 1 for when =n 3out and =n 30. The results
indicate that the method remains robust if the sampling frequency is
reduced. This means that for the CNN, the binary VI images of different
appliance types are still sufficiently distinct. Note that, only for this
scenario the sampling frequency is lowered. However, as the result for
the different sampling frequencies is alike, similar conclusions can be
drawn for the forthcoming scenarios.

5.4. Scenario 2

To define how well the method can identify unidentified appliances,
training is done on 10 appliances and testing on 1 hold out appliance. It

Fig. 5. Examples of binary VI images with =n 20 for the appliance types present in PLAID.

Fig. 6. The rand index for (a) PLAID and (b) WHITED when all data is used to learn the feature space with dimension nout .

Fig. 7. The clusters found by DBSCAN in the learned feature space.
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is validated whether (1) the 10 selected appliances are properly sepa-
rated in individual clusters, and (2) the 11th appliance has its data
points classified as ‘unidentified’. The first criterion is validated by
calculating the RI, like done above, and the second criterion by calcu-
lating, as recommended in [33], the F1-measure of the hold out appli-
ance whose samples must be labeled as ‘unidentified’. For this hold out
appliance, the F1-measure is defined as:

=
+

F
precision recall

precision recall
2·

·
1

(3)

=
+

precision TP
TP FP (4)

=
+

recall TP
TP FN (5)

with TP the true positives (the appliance’s samples labelled as ‘uni-
dentified’), FP the false negatives (the appliance’s samples assigned to a
cluster), and FN the false negatives (other samples labelled as ‘uni-
dentified’). This procedure is performed in a leave-one-appliance-out
cross-validation. As PLAID and WHITED contain respectively 11 and 22
appliances, the training and testing is repeated 11 and 22 times, re-
sulting in 11 and 22 F1-measures. To obtain the final test result, the
macro-average is taken:

∑=
=

F Fmacro
i

a

i
1

1,
(6)

where a is the amount of different appliances, and F i1, is the F1-measure
when appliance i is used as hold out appliance.

Fig. 9a and c display the RI values, and Fig. 9b and d the Fmacro for
respectively PLAID and WHITED for different nout and n values. In-
creasing nout and keeping n fixed has little impact on the values. Setting

=n 3out is already sufficient to represent the VI image. However,
changing n and keeping nout fixed has a bigger influence. The best RI
values and Fmacro for both datasets are obtained for ⩾n 30, the max-
imum is respectively 0.994 and 0.899 for PLAID, and respectively 0.856
and 0.847 for WHITED. It is thus important that the VI images have a
sufficient fine resolution. The high RI values confirm the capability of

the siamese neural network to learn a feature space where the 10
clusters are well separated and the high Fmacro-values confirm the cap-
ability to detect new (unidentified) appliances.

Fig. 10 shows an example of the learned three dimensional fea-
ture space ( =n 3out for the sake of easy plotting) for PLAID when
using ten appliances for learning. The hold out appliance is the mi-
crowave. Each axis of the plot represents one element of the neural
network’s output vector with size nout. The ten appliances used for
learning form ten clusters, the label of each of them is written next to
it. The samples belonging to the microwave, i.e., the hold out ap-
pliance, do not belong to any cluster and neither form a cluster as the
siamese neural network is not trained on them. They are spread
around, and get the label ‘unknown’. Note, that the learned feature
space in Fig. 10 is different from the one in Fig. 7, because the
samples used to learn the space are different (in Fig. 10, the samples
for the microwave are not used). To know which appliances are
mixed up, a confusion matrix is created: Fig. 11 reports for each
appliance type (row index) the number of labels that were correctly
predicted or confused with other appliances (column index). The
values in the matrix are absolute and the colors represent the relative
value per row (thus per appliance). It can be seen that if the laptop is
not used for training, it is put in the cluster containing the CFL ex-
amples and the other way around. A visualization for WHITED is not
given as the number of appliances is too big to create a clear plot.

5.5. Scenario 3

To test whether the method generalizes well, training and testing is
performed on different houses. As recommended in [8], leave-one-
house-out cross-validation is used. Note, no appliances are left out. For
PLAID, this means that 54 houses are used for the training set and 1 for
test set. For WHITED, the annotation of measurement locations is not
available. Houses are created artificially by assigning each appliance of
each appliance type randomly to one house. The total number of houses
is set at 9, which corresponds to the maximum number of appliances
per appliance type.

It will now be validated whether (1) the learned feature space using
the 54 houses separates the appliance clusters sufficiently, and (2) the
appliances of the test set are projected on the correct cluster. The first
criterion is validated by calculating the RI and the second by counting
the amount of test samples that are assigned to the correct cluster, to a
wrong cluster or get the label unidentified. Three accuracy measures
are defined: (1) the positive rate defined as the percentage of samples
assigned to the correct cluster, (2) the negative rate defined as the
percentage of samples assigned to the wrong cluster, and (3) the uni-
dentified rate defined as the percentage of samples labelled as ‘uni-
dentified’. These quantities add up to 100%.

To be able to calculate the first and second rates, the appliances
labeling provided in the PLAID dataset is used. As leave-one-house-out

Fig. 8. The binary VI images for the hairdryer and fridge in PLAID when using different sampling frequencies.

Table 1
The rand index for PLAID and WHITED when all data is used to learn the
feature space with dimension =n 3out , the image size is =n 30out , and sampling
frequency is altered.

PLAID WHITED

30 kHz 0.99 44 kHz 0.85
15 kHz 1 22 kHz 0.85
3 kHz 0.99 4 kHz 0.81
1 kHz 1 1 kHz 0.87
0.5 kHz 0.99 0.5 kHz 0.85
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cross-validation is performed on 55 houses, there are 55 test scores (one
for each house). To obtain the final test result, these values are aver-
aged.

Figs. 12a and 13a show the RI values for different nout and n values
for respectively PLAID and WHITED. Again, for both datasets, it can be
concluded that the clusters are separated sufficiently for higher n va-
lues. Changing nout has little impact on the result.

Fig. 12b, c and d show the three accuracies defining how much test
samples are respectively assigned to the correct, incorrect or no cluster
for PLAID. Again, changing nout does not change the results sig-
nificantly. When using =n 16, a large part of the test samples >( 50%)
are assigned to the correct cluster, but also a significant part of them
∽( 22.5%) are classified incorrectly. When using a larger =n 50, the
amount of correctly assigned test samples is much smaller, namely
around 38.7%, but so are the incorrectly assigned samples ∼( 1.3%). As a
consequence, the amount of samples labeled as unidentified is larger
(around 60%).

Fig. 13b, c and d show the three accuracies defining how much test
samples are respectively assigned to the correct, incorrect or no cluster
for WHITED. Again, changing nout does not change the results sig-
nificantly. For WHITED, the highest obtained positive rate is 73% for
when =n 50. The corresponding negative rate and unidentified rate are
6%, and 20%. So the parameter setting leading the best positive rate, also
leads to the best negative rate and a good unidentified rate. This in
contrast to PLAID.

Although the RI values for WHITED are lower than those for PLAID,
the third scenario obtains the best result for WHITED. An observation
that can explain this, is that the different appliances for each appliance
type are more alike in WHITED than in PLAID. Thus, an appliance of a
known appliance type is more likely to fall in the center of the cluster.
While for PLAID, these appliances of a known appliance type will drift
around the cluster. This can be checked by calculating the rank of the
correct cluster for each test sample labeled as unidentified. First, all
clusters are ranked by calculating the distance dij from the given sample
i to each of the clusters j, and sorting these distances in ascending order.
Ideally, the test sample’s appliance cluster should be on the first posi-
tion. Fig. 14a shows the rank that is averaged over the 55 folds. For all
the different parameter combinations, this result shows that the correct
cluster is the closest or second closest cluster. Fig. 14b shows the box
plot of the rank of the correct cluster for all the test samples labeled as
‘unidentified’ in all the test houses (1074 ranks) when =n 50. As these
box plots show, their is very little variance on the rank of the correct
cluster, making the average a valid measure. This result is important
because it implies that if the method labels a sample as unidentified, it

Fig. 9. The RI values and Fmacro for different nout and n values when leave-one-appliance-out cross-validation is used for PLAID (a)–(b), and WHITED (c)–(d).

Fig. 10. The 10 clusters and unidentified points found by DBSCAN in the
learned feature space representing respectively the 10 seen appliances and the 1
hold out appliance.

Fig. 11. The confusion matrix when leave-one-appliance-out cross-validation is
used.
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can query the user to confirm if it is a new appliances or not, while
immediately suggesting a label (e.g., listing the top-3 of the ranked list).
If the sample originates from an existing appliance, the correct appli-
ance (cluster) will be in this top.

5.6. Quasi real-time solution

The presented results were obtained in an offline manner. However,
in practice, this method needs to be used in an online manner (quasi
real-time). For an operational deployment, we start from a trained
siamese neural network. This implies a learned feature space, and

Fig. 12. The RI values, and the positive, negative and unidentified rate for PLAID for different nout and n values when leave-one-house-out cross-validation is used.

Fig. 13. The RI values, and the positive, negative and unidentified rate for WHITED for different nout and n values when leave-one-house-out cross-validation is used.

Fig. 14. (a) The average rank of the correct cluster for the samples of PLAID labeled as ‘unidentified’ for different nout and n values when using leave-one-house-out
cross-validation. (b) The box plots of the rank of the correct cluster for all samples of PLAID labeled as ‘unidentified’ for =n 50 and different nout values.
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available appliance clusters (for the already known appliances). To
apply this, a system needs to perform the following steps:

1. real-time event detection [34] to identify the activation or deacti-
vation of an appliance,

2. extraction of the appliance specific current and voltage signal when
it reached steady-state behaviour, as discussed in [35],

3. creation of the binary VI image, as described in [8],
4. transformation of the image to the learned feature space by feeding

the image as input to the convolutional neural network part of the
siamese neural network,

5. in this feature space, calculation of the distance of the detected
device to all known appliances.
(a) If the distance to all of the clusters is bigger than a threshold,

then mark the device as ‘unidentified’, else
(b) label the device as the type of the closest cluster.

6. saving the VI image for (re) training the siamese neural network
later,

7. (optional) if the detected appliance is classified as ‘unidentified’, asking
feedback to the user in order to obtain a correct label (although this label
is not required for the continuation of the algorithm).Table 2 shows that

every step takes less than a second for one sample, and can thus be realized
in quasi real-time. The experiments were executed on an Intel(R) Xeon(R)
CPU with 20 cores and 128GB ram. It is also seen from Table 2 that re-
training the siamese neural network is more time consuming and cannot be
performed real-time. Therefore, it is advisable to retrain the siamese net-
work daily, e.g., every night. To bootstrap the system, we can start from a
dataset obtained from other households. If this is not possible, the user will
have to label each event first.

6. Conclusion

This paper presents a novel method for appliance classification and
detection of unidentified appliances in non-intrusive load monitoring. Both
rely on a learned vector representation function (a trained cNN), which
takes as input an image representation of a VI trajectory. To learn this re-
presentation, training data in the form of such VI images, in labeled pairs of
the same/different appliance instances is needed. A siamese neural network
is trained on these paired instances outputting a pair of lower-dimensional
vector representations, such that the distance between these two vectors is
lower or higher than a threshold for respectively same/different appliance.
In this newly learned feature space, DBSCAN is performed, allowing us to
assign test samples to clusters or label them as unidentified. Benchmarking
on PLAID and WHITED shows that an Fmacro-measure of 0.90 and 0.85 is
obtained when detecting unknown appliances. Furthermore for PLAID, if
unseen instances of known appliance types are given as input: 39% is clas-
sified correctly, 1% incorrectly and 60% as unidentified. However for the
appliances classified as unidentified, a ranking of good suggestions can be
made concerning the cluster it belongs to, as the expected rank of the
correct cluster is 1.75. For WHITED, if unseen instances of known appliance
types are given as input: 73% is classified correctly, 6% incorrectly and 20%
as unidentified. Additionally, we benchmarked the method on subsampled
data of PLAID and WHITED, and the results pointed out that the perfor-
mance remained unchanged for frequencies as low as 0.5 kHz.
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