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Abstract—An important challenge in home automation is the
energy efficient optimization of the indoor environment. This
relies on the solution of a multi-objective optimization problem
where energy efficiency and comfort parameters are maximized
simultaneously. This paper presents three data-driven control
algorithms based on machine learning techniques, which offer
an alternative to traditional control methods. The results demon-
strate that some data-driven methods can achieve similar results
than rule-based systems. Moreover, they require no prior expert
knowledge and have better scalability than standard approaches.

Keywords—Model predictive control; Deep reinforcement learn-
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I. INTRODUCTION

Buildings consume over 40% of the total power in de-

veloped countries, 27% corresponding to household’s con-

sumption and 13% to other building types. More specifically,

heating accounts for 55% to 67% of the final energy used

in residential buildings [1]. New standards and directives in

Europe aim towards energy efficient buildings, which brings

attention to control algorithms that can maximize energy

efficiency while maintaining adequate comfort conditions and

air quality for the inhabitants.

Comfort is a subjective experience and depends on multiple

parameters such as thermal comfort and air quality. Measuring

related parameters, such as temperature or CO2 levels, is

nowadays possible due to the adoption of sensors for homes.

The data collected by these sensors has potential applications

in indoor environment control.

Thermal comfort is mainly dependent on room temperature

and relative humidity (RH). Other factors include metabolic

rate, clothing insulation, gender, user’s expectations, air speed

and mean radiant temperatures [2].

Indoor air quality is the degree in which the indoor air

is pollutant free. It is indicated by the levels of indoor

contaminants such as sulfur dioxide (SO2), carbon dioxide

(CO2), ozone (O3), volatile organic carbon (VOC), among

others. Short and long-term exposure to such contaminants

can have acute health effects. In household studies, CO2 is not

a concern as its levels are unlikely to exceed safe thresholds

under normal building conditions. However, measuring CO2 is

often done as it provides information about air re-circulation

and potential exposure to other pollutants. In addition, CO2

levels are valuable indicators of room occupancy, which in

turn is used as a proxy for ventilation, cooling and heating

demands [3, 4].
In general, maximizing comfort comes with an increase in

energy consumption. In order to keep a good indoor air quality,

a high ventilation rate is needed, which in turn results in a large

heat loss.
This paper focuses on developing three data-driven con-

trol algorithms for the optimization of comfort and energy-

efficiency. The first method is a Moving Horizon Estimation

(MHE) controller based on gradient boosted regression trees.

The second and third methods use Reinforcement Learning

(RL) techniques. The models are trained and validated using

simulations of a two room apartment under different occu-

pancy profiles. It is confirmed by numerical results that some

data-driven methods can achieve similar results as rule-based

systems.
The novel contributions of this paper are the following:

• Multi-parameter optimization: Most of the related work

focuses on the optimization of only one or two parameters

such as temperature, air quality, and energy efficiency

(ventilation, heating or cooling). This approach optimizes

for four parameters: Indoor temperature, CO2 levels,

heating energy and ventilation energy.
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• Data-driven and model-free: Compared to traditional

rule-based control, data-driven models do not require

expert knowledge, nor a description of the building’s

physical dynamics. Additionally, data-driven models can

infer secondary information such as occupant’s behavior

and preferences, which can potentially improve control

efficiency.

The remainder of the paper is organized as follows: Section

II contains an overview of related work concerning model

predictive control and reinforcement learning. Section III

describes the simulation settings and defines the optimization

problem. Section IV presents the methodology, elaborating on

the different control strategies. Section V contains the results.

Section VI gives the conclusions.

II. RELATED WORK

Traditionally, building automation problems are addressed

by rule-based systems in which an expert uses best practices

and mathematical models to create a set of rules that control

different house components such as heating and ventilation.

Some strategies include intelligent scheduling, set-point resets

and demand-controlled ventilation [5]. Although rule-based

systems are extensively used, they have limitations such as:

• Solutions rely on heuristics and are most likely sub-

optimal.

• Their design is building specific and can hardly be

transferred to other buildings.

• They offer poor scalability for larger buildings or multiple

components [6].

Model predictive control (MPC) creates one or more models

that approximate the physical properties of the building in

order to predict the future states within a time horizon. The

controller then takes the action(s) that maximize a target

function within a given set of constraints.

In MPC, Artificial Neural Networks (ANN) have success-

fully been applied for optimizing the operation time of heating,

ventilation and air conditioning units (HVAC) [7, 8], predicting

temperature and relative humidity [9], and estimating future

load demand [10, 11]. Other examples of soft-computing tech-

niques include thermal comfort controllers based on neuro-

fuzzy logic [12, 13], and Random Forests for occupancy

estimation [14].

More recent papers have investigated the use of RL tech-

niques, where the optimization problem is addressed by an

agent that learns actions in a goal-oriented manner. Compared

to MPC techniques, RL offers the possibility of optimizing

long time horizons without causing time overheads during

evaluation. Additionally, they can easily be extended to control

multiple actuators and self adjust as user’s preference change

over time.

The multi-objective optimization of thermal comfort, en-

ergy efficiency and indoor air quality has been addressed

with a radial basis approximator in Q-learning [15], Extreme

Random Forests with Q-learning [16], ANNs with an Actor-

Critic architecture [17], Deep Q-learning (DQN) [18, 19], and

Convolutional Neural Networks (CNNs) [20].

For a more detailed review on building control we refer to

the surveys concerning HVAC control based on ANN [21],

time-series [22], and other soft-computing techniques [23].

III. OPTIMIZATION PROBLEM

The aim is to develop an intelligent control system that

optimizes comfort and energy efficiency by controlling multi-

ple actuators in a simulated indoor environment. The building

specifications of the environment are described in Section

III-A. The simulation settings are provided in Section III-B.

The optimization variables and objectives are outlined in

Section III-C.

A. Building Specifications

The simulated building is a two zone apartment located

in Brussels. Zone 1 (Z1) is composed of a living room and

entrance and zone 2 (Z2) is a bathroom. Table I contains the

area distribution and Fig. 1 its layout.

The roof and the facade with the window are in contact

with the exterior and have a thermal transmittance (U-value)

of 0.15 W/(m2K). The other surfaces are considered to be

adiabatic causing no energy loss. The window in zone 1

can be completely covered by an awning to reduce incident

radiation, it has a solar transmittance of 0.05 and reflectance

of 0.142. The ventilation system has a natural air supply and a

mechanical air exhaust with an extractor in each zone. Zone 1

has an extraction rate of minimum ±4.5 m3/h and maximum

of ±70 m3/h. Zone 2 has an extraction rate of minimum ±9

m3/h and maximum ±50 m3/h.

All the actuators are present in zone 1. Table II summarizes

the actuators’ effects and Table III shows their ten possible

states. The numbers in parentheses represent ordinal quantities

which are used to explain the control Algorithm 1 in Section

TABLE I
SIMULATED APARTMENT’S AREA DISTRIBUTION

Zone Space Dimensions Surface area

Z1 Living room 5 x 6 x 2.7 m 30 m2

Entrance 1.2 x 2 x 2.7 m 2.4 m2

(Window) (4.5 x 2.2 m) (9.9 m2)
Z2 Bathroom 3.8 x 2 x 2.7 m 7.6 m2

Total 5 x 8 x 2.7 m 40 m2

Fig. 1. Layout of the simulated two-room apartment
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TABLE II
OVERVIEW OF ACTUATORS AND THEIR EFFECTS

Actuators States Effect Z1 Z2

Ventilation Ventilation rate
x

Low
Mid
High

4.5 m3/h
17.6 m3/h
62.8 m3/h

Window Ventilation rate
x

Closed
Tilted
Open

dependenta

106.2 m3/h
232.4 m3/h

Awning Incident radiation
x

On
Off

dampenedb

full

a While the window is closed the rate is determined by the ventilation state.
b The incident radiation is reduced according to the awning’s physical

properties.

TABLE III
POSSIBLE ACTUATORS’ STATES

Window Ventilation Awning
Closed (0) Low (1) On (1)
Closed (0) Medium (2) On (1)
Closed (0) High (3) On (1)
Closed (0) Low (1) Off (0)
Closed (0) Medium (2) Off (0)
Closed (0) High (3) Off (0)
Tilted (0.5) Inactive (0) On (1)
Tilted (0.5) Inactive (0) Off (0)
Open (1) Inactive (0) On (1)
Open (1) Inactive (0) Off (0)

* The numbers in parentheses represent ordinal quantities and are used to
explain the algorithm in Section III-C.

III-C. It is important to notice two aspects of the actuators’

functionality. First, the window can provide additional venti-

lation at no energy cost, with a possibly larger loss-heat due

to the increased ventilation. Second, there is no direct control

of the heating in zone 1, nor of the ventilation and heating in

zone 2. These components are regulated by their own control

systems that react according to CO2 concentration and indoor

temperature. Nevertheless their behavior is indirectly affected

by the actions of the available actuators.

B. Simulation

The simulation is done using EnergyPlus [24] and interfaced

with control algorithms through Building Controls Virtual Test

Bed (BCVTB) [25].

The simulation goes from the beginning of February until

the end of April. This period provides a varied range of

conditions: in the beginning heating is essential for indoor

comfort, and at the end additional ventilation is of importance.

The outdoor temperature ranges from -9.1 °C to 22.7 °C, the

incident radiation ranges from 0 W/m2 to 837.7 W/m2. The

simulation is done in steps of ten minutes. Table IV shows the

simulation variables.

Three realistic occupancy profiles are used in order to

create different energy demand and air pollution scenarios. The

profiles are generated with a technique that provides realistic

TABLE IV
SIMULATION VARIABLES

Outdoor Z1 Z2

St
at

e
v a

ri
ab

le
s

Temperature (°C)
Time

Temperature (°C)
CO2 concentration (ppm)
Relative humidity (%)
Illuminance (lux)
People count
Heating power (W)
Ventilation power (W)
Incident radiation (W/m2)
Awning status
Window status

Temperature (°C)
CO2 concentration (ppm)
Relative humidity (%)
Illuminance (lux)
People count
Heating power (W)
Ventilation power (W)

A
ct

ua
to

rs

-
Awning
Window
Ventilation

-

behavior for Belgian households based on Aerts et al. [26].

The simulated occupancy profiles are:

A. One retired adult.

B. Two adults without children and both working full time.

C. Two adults without children, one working full time and the

other part-time.

Fig. 2 shows the corresponding occupancy distributions.

C. Optimization Objective

Each control algorithm is evaluated in terms of comfort and

energy efficiency profiles as follows. First each variable of

interest is converted into a score according to the weights

and formulas in Table V. Second, the variable scores are

aggregated in a weighted sum which results in a comfort score

(1) and an energy score (2).

Fig. 2. Occupancy profiles. For each hour is shown the amount of people
present in the apartment on average during the simulation.
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TABLE V
SCORE FUNCTIONS

Temperature
Day ST day

{
4, if 21.5 >= Temp(Z1) >= 20.5 or Occupancy == 0

max(0, 5− 2|Temp(Z1)− 21.5|), elsewise

Temperature
Night ST night

{
4, if 22 >= Temp(Z1) >= 19 or Occupancy == 0

max(0, 5.5− |Temp(Z1)− 20.5|), elsewise

CO2

concentration SCO2(Z1)

{
4, if 800ppm >= CO2(Z1) or Occupancy == 0

max(0, 4− (CO2(Z1)− 800)/133), elsewise

Ventilation
Energy Svent

⎧⎨
⎩

4, if 5000 > Event
5000−Event

11250
+ 4, if 50000 > Event > 5000

0, elsewise

Heating
Energy Sheat

⎧⎨
⎩

4, if 50000 > Eheat
50000−Eheat

75000
+ 4, if 350000 > Eheat > 50000

0, elsewise

Weights wT day = 2, wT night = 1, wCO2 = 2, wvent = 1, wheat = 3

Scomfort =
ST daywT day + ST nightwT night + SCO2

wCO2

wT day + wT night + wCO2

(1)

Senergy =
Sventwvent + Sheatwheat

wvent + wheat

(2)

Notice two important aspects: first, room temperature ST is

evaluated in two different ways in order to force a higher level

of comfort during daytime and when people are present. The

time between 8:10 and 23:00 corresponds to day-time and the

rest to night-time. Second, the comfort score only considers the

variables in Z1 as it is the zone where occupants spend most

of their time. For the energy score, the energy consumption

of both zones is considered.

In order to evaluate different user’s preferences two profiles

are proposed: Comfort priority (3) and energy efficiency

priority (4).

Comfort preference profile = 0.9Scomfort + 0.1Senergy (3)

Energy preference profile = 0.1Scomfort + 0.9Senergy (4)

IV. METHODOLOGY

In this section, the rule-based system, the moving horizon

estimation and the reinforcement learning approaches are

briefly introduced.

A. Rule-based System

A rule-based system is a common approach for building

automated control which can prioritize either for comfort or

energy efficiency. The benchmark is a rule-based system de-

signed for this specific case. The rules take into account room

occupancy, room temperature, CO2 levels, incident radiation

and the previous actuator state. Algorithm 1 contains the

pseudocode for the rule-based system that prioritizes comfort.

The numeric values for the actuator states correspond to

discrete actions as specified in Table III. The rules for the

controller with energy efficiency priority follow a similar

structure with different threshold levels. For the sake of brevity

this pseudocode is not included.

Algorithm 1: Rule-based for comfort

Input : P People count in both zones, T Z1 Temperature,
R Z1 Incident radiation, C Z1 CO2 level, Wp
Previous window’s status, Vp Previous ventilation
status, Ap Previous awning’s status,

Output: Ws Window’s status, Vs Ventilation status, As
Awning’s status

1 Ws = 0 As = 0 V s = 1
2 if P > 0 then
3 if T >= 22.2 and Wp == 0 then Ws = 0.5
4 else if T >= 23 and Wp <= 0.5 then Ws = 1
5 else if T <= 21.5 and Wp > 0 then Ws = 0
6 else Ws = Wp
7 else Ws = 0
8 if T > 20.5 then
9 if T > 21.5 then

10 if R > 200 then As = 1
11 else As = 0
12 else
13 if R > 240 then As = 1
14 else As = 0
15 else As = 0
16 if C < 720 then
17 if T > 21.8 then
18 Vs = Vp + 1
19 if Vs > 3 then Vs = 3
20 else Vs = 1
21 else
22 if Vp == 1 then
23 Vs = 2
24 else if Vp == 2 then
25 if C > 760 or T > 21.8 then Vs = 3
26 else Vs = 2
27 else if Vp == 3 then
28 if T > 21.8 then
29 Ws = 0.5
30 else if T > 22.5 then
31 Ws = 1
32 else Vs = 3
33 else if Wp > 0 and Ws == 0 then
34 Vs = 3
35 if Ws == 0.5 then Vs = 0
36 if Ws == 1 then Vs = 0
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Fig. 3. Moving horizon estimation. A is the set of available actions (see Table
III), S are the state variables (see Table IV) and Mavg the moving average of
each state variable.

B. Moving Horizon Estimation

The MHE controller is composed of a predictive model

and a scorer. The predictive model estimates the indoor

temperature, CO2, ventilation and heating demand for the

next N time-steps based on the current state (see Table IV),

moving averages of the state variables and the possible actions

(see Table III). The scorer evaluates the predicted states

and chooses the action that maximizes the score within the

predicted horizon. Fig. 3 shows a schematic of the MHE

controller.

The predictive models are based on extreme gradient

boosted trees (XGBoost) [27]. To forecast multiple steps

ahead, a rolling approach is applied, where only the infor-

mation available up to current time step is used to predict the

next N time-steps.

The number of possible outcomes increases exponentially

with the number of time-steps N. In order to reduce the

computation time, it is assumed that the controller repeats the

same action for the next k time-steps, where 1 < k < N ,

meaning that the controller may take an action for a shorter

period than the prediction horizon. This is a sensible choice

as prediction errors become larger as the horizon (N) grows.

C. Reinforcement Learning

In RL, an agent interacts with an environment in discrete

steps and learns to perform the best actions over time. The

agent in this case is equivalent to the controller. For a given

state (st) the agent takes an action (at) by following a policy

(π). Afterwards the system transitions to a new state st+1 and

receives a scalar reward (r). The objective then is to learn a

policy that maximizes the rewards, in other words, that learns

to take the best actions for all possible states. The objective

can be expressed as maximizing the sum of discounted rewards

over the episode R =
∑∞

t=t0
γt−t0rt. Where γ is a discount

factor that makes the sum finite, and balances the importance

of immediate rewards and future ones. Fig. 4 shows the general

RL structure.

Fig. 4. Reinforcement Learning controller

Deep Q-learning (DQN) is a RL technique where ANNs

are used as the approximator for the mapping function. In this

paper two DQN extensions are implemented, namely Double

Q-learning (DDQN) [28] and Rainbow (RBW) [29]. As far as

we know, this is the first work to introduce RBW for building

environment control.

Compared to the MHE controller, RL offers two advantages.

First, the RL models learn to predict the reward of future states

instead of the future state variables, which removes the need

of having independent models for each variables of interest

as seen in Fig. 3. Second, the MHE model predicts state

variables for each subsequent time-step, whereas RL learns

a sum of discounted future values, which removes the need of

making the N time-step predictions. These advantages reduce

the model complexity and the overhead of predicting multi-

ple variables in subsequent time-steps, however, RL models

require considerably more data in order to be trained.

V. RESULTS

In this section the simulated building presented in Section

III is evaluated following the control algorithms presented in

Section IV. Section V-A contains the MHE specifications.

Section V-B contains the RL specifications. Section V-C

compares the models and discusses the results.

A. Moving Horizon Estimation Setup

For each occupation profile, a MHE controller is trained

using offline recordings of the other occupancy profiles. This

is done so the model is trained under different occupancy pro-

files, and then tested in an unseen profile. For each occupancy

profile four datasets are recorded: two while using the rule-

based system (see Algorithm 1). Similarly, two with a modified

version of the rule-based system which takes random actions

with a certain probability.

The controller consists of four independent XGBoost mod-

els and a scorer. The models forecast indoor temperature

and CO2 levels for zone 1, ventilation energy demand for

zone 2, and heating energy demand for both zones. Note that

ventilation of zone 1 is directly controlled. Each XGBoost

model is tuned using 10-Fold cross-validation and grid search

to find the best hyper-parameters. As subsequent time-series
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samples are temporally dependent, a split-block strategy is

used, where the splits are done in full days, rather than

individual samples [30].

During evaluation, the models predict the next N time-steps

according to the current state (see Table IV) and possible

actions (see Table III). Each prediction is then converted into

a score following the preference profiles specified in (3) and

(4). Finally, the controller selects the best action a*, which

corresponds to the action that maximizes the score for the

whole horizon N.

If the MHE algorithm is directly applied, the controller

behaves as an on/off system that relies mostly on the window

and seldom the ventilation. In practice this would be an

undesired behavior, therefore, an additional constraint is added

that restricts the controller from switching the window status

more than 15 times within 12 hours. If the constraint is

violated, the scorer takes the next action with highest score,

and successively until the action is a valid one.

The k value is set to 1 and the prediction horizon N to 4 (40

minutes). Other k-values were evaluated but are not reported

here as their performance was not significantly better than this

configuration.

B. Reinforcement Learning Setup

In the case of RL, the controller is trained online while it

interacts directly with the environment. A RL model is trained

for each occupancy profile and each preference profile.

The input state corresponds to the concatenation in time of

the last 18 time-steps (3 hours). The reward is the score for

the new state according to the preference profiles in (3) and

(4).

Table VI shows the agent specifications. The network ar-

chitecture is slightly different between DDQN and RBW. In

both cases the first two layer are convolutions in the time

axis, which allow learning temporal features. The rest of the

implementations is as follows:

• DDQN: Table VII shows the network architecture. The

agent follows a ε-greedy policy with linear decay. After

28 episodes the ε value is kept to 0.05 and the simula-

tion is run for another 12 episodes. This gives in total

information of 120 months (∼1.540.000 samples).

TABLE VI
RL PARAMETERS

DDQN RBW
Discount 0.95
Batch size 64
Initial replay 12816
Memory type replay
Memory size 25632
Synch.
frequency 6000 5000

ε init
ε decay step
ε final

1
2.5 e-6

0.05
-

Vmin
Vmax -

0
1

1−γ

TABLE VII
DDQN NETWORK PARAMETERS

Network configuration
# Type Size Specs

1 Conv1D 32
window = 4
stride = 3
padding = Same

2 Conv1D 32
window = 3
stride = 2
padding = Same

4 Flatten - -
5 Dense 256 -
6 Dropout - p = 0.20
7 Dense 128 -
8 Dropout - p = 0.20
9 Softmax 10 -

• RBW: Table VIII shows the network architecture. The

RBW agent uses noisy linear layers as mean of explo-

ration, therefore no ε value is given. Convergence of

RBW was faster than DDQN, therefore the simulation

is run for only 30 episodes, equivalent to 90 months

(∼1.155.000 samples).

C. Evaluation

The results of the three models are summarized in Figs. 5 to

7 for each of the three models and the benchmark (REF). The

results compare performance in terms of comfort and energy

scores (1) and (2) for each occupancy profile. The dashed

line corresponds to the Pareto front, and highlights all optimal

solutions.

The RBW implementation was able to obtain similar results

than the rule-based system under all of the occupancy profiles.

In all cases the solutions found are non-dominated and part

of the Pareto front. In some cases the trade-off for comfort

and energy presents potential gains. For example, the comfort

preference profile RBW under the occupancy profile B yields

a saving of 17% of heating energy without a significant

change in comfort (see Fig. 6). Table IX compares the energy

consumption between RBW and the rule-based system for the

three months period.

On the other hand, MHE and DDQN performances are

below the Pareto front in most cases, except for occupancy-

TABLE VIII
RBW NETWORK PARAMETERS

Network configuration
# Type Size Specs Module

1 Conv1D 32
window = [5]
stride = 2
padding = same

Sequential

2 Conv1D 32
window = [3]
stride = 1
padding = same

3 Flatten - -
4 Dropout - p = 0.2
5 Noisy Linear 512 σ = 0.5

Dueling6 Noisy Linear 512 σ = 0.5
7 Soft max num. atoms -
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Fig. 5. Performance in occupation profile A

Fig. 6. Performance in occupation profile B

Fig. 7. Performance in occupation profile C

TABLE IX
ENERGY CONSUMPTION IN KWH

Profile
Vent.
Energy

Heat.
Energy

REF RBW REF RBW

A Comfort 25.82 51.87 291.73 217.92
Energy 1.04 2.08 64.11 61.01

B Comfort 54.82 5.02 304.63 357.33
Energy 5.61 2.73 68.32 248.24

C Comfort 50.59 51.61 351.19 288.65
Energy 5.45 2.53 73.90 99.90

profile C (see Fig. 7) where also the DDQN and MHE models

for energy optimization are part of the Pareto front.

MHE’s poor performance can be attributed to two factors:

first, the actuator’s effect may occur in time spans longer

than the optimization horizon of 40 minutes. Increasing the

time horizon would in principle improve the performance

with the drawback of requiring a more complex model and

a considerable computational overhead. Second, the MHE

was trained using data generated by the rule-based system

which lacks information of undesirable states. In case the

controller observes a previously unseen state, it may be taking

suboptimal actions, which points to a poor generalization. In

order to compensate for this, additional data was generated by

allowing the controller to take random actions. However, based

on the results, it seems that the amount of data generated was

insufficient, or the random actions were not able to generate

valuable information.

DDQN’s poor performance can be attributed to a limited

exploration due to following the ε-greedy policy. This problem

is partially addressed by the noisy layers, which are included

in the RBW implementation. This can also be related to a

high similarity between the outcome of different actions. This

can occur when external parameters have a considerable influ-

ence in the building’s environment, such as wind speed, rain

and clouds. The difference between taking different actions

becomes less significant and may lead to under-performing

policies. In such scenarios the dueling networks approach is

able to find better policies [29].

VI. CONCLUSIONS

This work presented three multi-objective data-driven con-

trol approaches to maximize comfort and energy efficiency in

a simulated building.

It was found that RBW is able to achieve a performance

comparable to the traditional rule-based systems. It was also

found that MHE and DDQN cannot achieve good perfor-

mances under the chosen settings.

RBW offers an alternative to traditional building’s environ-

ment control. As it is a driven-data algorithm, it can be trained

using historical data. Thanks to its model free approach,

it can be implemented in buildings with different physical

properties, more zones and different user’s behavior without

requiring an extensive study of their interactions with the

indoor environment.
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