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Abstract— Sleep apnea is one of the most common sleep
disorders. It is characterized by the cessation of breathing
during sleep due to airway blockages (obstructive sleep apnea)
or disturbances in the signals from the brain (central sleep
apnea). The gold standard for diagnosing sleep apnea is
performing an overnight polysomnography recording which
contains, among others, a wide array of respiratory signals.
Respiration information can also be extracted from other
physiological signals such as an electrocardiogram or from a
bio-impedance measurement on the chest. Studies have shown
that algorithms can be developed for automated sleep apnea
detection using one of these many respiratory signals. In
this work, the predictive power of these different respiratory
signals is analyzed and compared. The results provide useful
insights into the comparative predictive power of the different
respiratory signals in a realistic setting for automated sleep
apnea detection and provide a basis for the development of less
obtrusive measurement techniques.

I. INTRODUCTION

Sleep apnea is one of the most common sleep related
disorders. It is characterized by the occurrence of breathing
pauses of at least 10 seconds (apneic episodes) during the
night [1] leading to frequent awakenings. If left untreated,
the patient is at risk of hypertension, cardiac arrhythmia,
heart attacks and strokes [2], and has an increased chance
of motor vehicle collisions [3]. Sleep apnea is classified as
either Obstructive Sleep Apnea (OSA) in which the airway is
blocked by the throat muscles, Central Sleep Apnea (CSA)
in which the signals to control the breathing are disturbed or
hypopnea in which the breathing is becoming too shallow.
Hypopnea can be further categorized as obstructive or central
hypopnea. Although some studies report that an estimated
49.7% of male and 23.4% of female adults suffer from sleep-
disordered breathing [4], many cases remain undiagnosed as
patients are rarely aware of their condition.

The gold standard to detect and subsequently diagnose
sleep apnea is an overnight polysomnography (PSG) in a
specialized sleep laboratory [5]. During this PSG, multiple
physiological signals pertaining to respiration, oxygen satura-
tion, cardiovascular functioning and sleep status are recorded.
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Then, trained sleep technicians evaluate the recorded signals
using a standard reference such as the AASM guidelines [5]
and annotate each part of the signal as either OSA, CSA,
hypopnea or no apnea. These annotations are used to com-
pute the Apnea-Hypopnea-Index (AHI) which is the number
of apnea and hypopnea events per hour and which is used to
categorize the severity of the condition from mild to severe.

Due to the large amount of recorded signals, PSG studies
can be uncomfortable for the patient leading to an unrepre-
sentative night of sleep. Furthermore, the shortage of beds
and staff in medical centers typically results in long waiting
times (2-10 months in the US, 7-60 months in the UK) [6].

Much research has been done into reducing the discomfort
of the PSG recording and waiting times by developing
portable home monitoring devices [7]. Such devices record
a subset of the standard physiological signals in a PSG and
often contain one or more respiration measurements origi-
nating from a chest band, pressure sensor, thermal sensor or
other device. Respiration can also be accurately estimated
from other physiological signals such as the electrocardio-
gram (ECG). This estimate is known as the ECG Derived
Respiration (EDR) signal [8] and can be computed in various
ways. A measurement of the chest bio-impedance can also be
used to estimate the respiration as impedance changes reflect
changes in the volume of air within the patient’s lungs [9].

Sleep apnea diagnosis is challenging, as it requires the
analysis of interactions within a wide array of physiological
signals recorded by a full PSG. In this paper, only respiratory
information is used to screen potential sleep apnea patients.

Various studies have demonstrated algorithms for the
detection of sleep apnea using one of these signals. In this
work, we perform a comparison of these different respiratory
signals and their predictive power for the automated detection
of sleep apnea using machine learning. We not only include
OSA, but also CSA as well as hypopnea events. Furthermore,
we perform this analysis on a real-life dataset gathered in
a clinical setting without any manual cleaning to reflect a
realistic measurement. The predictive power of the respira-
tory signals is analyzed and compared using three different
machine learning models: Artificial Neural Networks (ANN),
Logistic Regression (LR) and Random Forests (RF).

In Section II, we discuss the data gathering and various
respiratory signals used in the study. In Section III, the
experimental setup is discussed. Next, in Section IV, results
are presented and their consequences examined. Finally, in
Section V, conclusions are made.
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II. RESPIRATION DATASET

The study uses real-life data gathered from 23 patients
enrolled for an overnight PSG analysis in a clinical setting
at Ziekenhuis Oost-Limburg, a hospital in Belgium. The
study was conducted in accordance with the Declaration of
Helsinki and was approved by the Ethical Committee before
study onset (CME ZOL, reference: 16/042U). All partici-
pants provided written informed consent before inclusion.
The data, consisting of the gold-standard PSG recording
and the chest bio-impedance measurement, was annotated by
trained technicians following the AASM guidelines [5] for
OSA, CSA and hypopnea. In the annotations, no distinction
is made between obstructive or central hypopnea.

The set of patients consists of 6 female and 17 male
subjects with mean age 57.5 years (std± 13.5 years). There
are 3 patients with normal AHI, 8 with mild AHI, 4 with
moderate AHI and 8 with severe AHI.

The PSG recording consists of various respiratory signals
recorded at 200Hz:

• Abd. belt: Abdominal respiratory belt below the lower
edge of the left ribcage.

• Thor. belt: Thoracic respiratory belt below left armpit.
• Vtot: Total relative chest volume which is a combination

of the abdominal and ribcage volume [10].
• Cannula: Pressure from nasal cannula positioned be-

tween nose and upper lip.
• Thermistor: Nasal thermistor positioned between the

nose and upper lip, on top of the nasal cannula.
The PSG recording has a single-lead ECG (lead I)

recorded at 200Hz. From this ECG signal, RR intervals are
extracted using a Pan-Tompkins beat detector [11]. From
these RR intervals, the instantaneous Heart Rate (HR) is
extracted. These ECG, RR and HR signals are subsequently
used to extend the respiration dataset with three commonly
used EDR signals:

• EDR1: Cubic spline interpolation of the R-peak ampli-
tudes as the amplitude of these peaks is modulated by
the respiration.

• EDR2: Filtered ECG signal using a combination of a
low-pass filter with cutoff frequency of 0.4 Hz and a
high-pass filter with cutoff frequency of 0.2Hz [12].
Both filters have a zero phase shift.

• EDR3: Filtered HR signal using the same filtering
method as in EDR2.

Finally, the respiration dataset also includes the bio-
impedance (BioZ) signal measuring the impedance of the
body at 1024Hz using a small sensor placed in the middle of
the chest. As the impedance recordings are complex-valued,
the magnitude of the bioZ signal is used in the next steps .

III. EXPERIMENTAL SETUP

The experimental setup consists of three different machine
learning models to assess the predictive power of the various
respiration signals for the prediction of sleep apnea events.
The respiration signals are split into overlapping sections of
30 seconds, each 1 second apart. The annotation provided

by the trained sleep technicians at the end of the section
is used as the annotation label for that section. Before the
signal sections are used in machine learning models, they
are first preprocessed and features are extracted from them.
To reflect a realistic measurement, all signals are processed
automatically and no manual cleaning is performed.

A. Preprocessing

Both the directly measured as well as the derived respi-
ratory signals contain noise due to subject movement, elec-
trical inference, measurement noise and other disturbances.
To extract all relevant respiration information, the signals
are passed through a fourth-order low-pass zero-phase-shift
Butterworth filter with a cutoff frequency of 0.7Hz. Next,
the moving mean computed with a width of 4 seconds
is subtracted from the original signal to remove baseline
wander and large motion artifacts. Finally, the signals are
resampled at 5Hz to reduce the computational burden in later
steps. After the preprocessing stage, the signals are split up
into overlapping 30 second sections as previously detailed.
These are then individually preprocessed by rescaling them
and subtracting a baseline to get the minimum section value
to 0 and the maximum section value to 1. This ensures all
characteristics in the respiration signal are equally visible
regardless of the signal strength.

B. Feature Extraction

After preprocessing, each 30 second section is passed
through the feature extraction phase. Typical discriminative
features for sleep apnea, sleep studies and biomedical health
in general, are extracted, both in the time-domain as well as
the frequency-domain [13], [14]. The time-domain features
include the signal mean, the signal standard deviation, the
signal skewness and the area under the absolute value of the
signal. Furthermore, peak detection is performed to locate
respiratory peaks. These locations are then used to add
extra features such as mean peak height, standard deviation
of peak height and skewness of peak height together with
the number of peaks and the mean inter-peak distance,
standard deviation of the inter-peak distance, skewness of
the inter-peak distance and the sum of the peak heights. The
frequency-domain features are computed by computing the
Power Spectral Density (PSD) of each section and extracting
the peak frequency, mean frequency, central frequency and
band-power.

C. Modeling

The features extracted via the previous processes are
used in three different machine learning models for each
respiratory signal: a two-layer Artificial Neural Network
(ANN) model, a Logistic Regression (LR) model [15] and
a Random Forest (RF) model [16] as these are commonly
used in sleep apnea and other sleep or medical studies [17].

The ANN and RF models have built-in feature relevance
detection. The LR model has an additional feature selection
stage in which the most important features are selected
to prevent overfitting. The model hyperparameters, i.e. the
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TABLE I
OVERVIEW OF RESULTS WITH THE ANN MODEL FOR ALL RESPIRATORY SIGNALS. EACH SIGNAL HAS BEEN TESTED FOR THE PREDICTIVE

PERFORMANCE FOR OSA (O), CSA (C), HYPOPNEA (H) OR A COMBINATION THEREOF.

Abd. belt Thor. belt Vtot Cannula Thermistor BioZ EDR1 EDR2 EDR3
Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp Se Sp

o 0.76 0.72 0.77 0.62 0.81 0.71 0.46 0.81 0.86 0.75 0.59 0.74 0.69 0.44 0.53 0.52 0.62 0.52
c 0.62 0.82 0.88 0.69 0.85 0.71 0.85 0.74 0.65 0.74 0.76 0.70 0.73 0.78 0.62 0.50 0.76 0.55
h 0.67 0.59 0.47 0.60 0.60 0.66 0.58 0.63 0.72 0.63 0.61 0.62 0.56 0.48 0.61 0.41 0.54 0.54
oc 0.59 0.82 0.80 0.66 0.42 0.80 0.88 0.74 0.86 0.73 0.80 0.69 0.61 0.64 0.74 0.39 0.69 0.49
och 0.71 0.65 0.55 0.57 0.73 0.63 0.72 0.65 0.78 0.65 0.67 0.64 0.62 0.48 0.71 0.33 0.62 0.47

number of hidden nodes within each layer for ANN, the
regularization parameter for LR and the number of trees and
maximum number of features per split for RF, are optimized
using Bayesian optimization (BO). For a detailed description
of BO, we refer to [18]. The metric used for this optimization
is discussed in the evaluation section. This hyperparameter
optimization ensures the full predictive power of the model
is harnessed and overfitting is reduced. To further reduce
overfitting for the ANN model, early-stopping is employed
based on 10% of the left-out training data for validation.

All models are validated using 5-fold cross-validation
where care has been taken that no fold has data of a patient
already represented in another fold to ensure the models are
capable of accurate predictions for new, unseen patients.

As apnea and hypopnea events are relatively rare, special
care needs to be taken with this imbalance during training. If
the models are trained using the original data distribution, the
models would be too inclined to always predict a non-apnea
event. Instead, we balance the training dataset by randomly
selecting as many non-apnea events from the training data
as there are apnea events. However, for evaluation purposes,
it is important that the original imbalanced data distribution
is maintained during the test phase.

To analyze the strength of the model to detect certain
apnea types, several models are built using subsets of the
data. This includes only OSA events (o), only CSA events
(c), only hypopnea events (h), only apnea events (oc) or any
type of apnea or hypopnea events (och). All detected apnea
events are considered sleep apnea.

D. Evaluation

The main evaluation metrics used in the comparison are
the Sensitivity (Se), also known as recall, and Specificity
(Sp) metrics as these are commonly used in sleep apnea and
other biomedical literature. These two metrics can also be
summarized into an Informedness metric.

Se = TP/(TP + FN) (1)
Sp = TN/(TN + FP) (2)

Informedness = Se + Sp − 1 (3)

The sensitivity and specificity metrics are influenced by a
decision threshold τ . The various combinations of sensitivity
and specificity at a specific τ can be summarized in a
Receiver Operator Characteristic (ROC) and the area under
this curve (AUROC). This AUROC metric is often used as

a hyperparameter optimization metric for machine learning
models. However, it is not suited for problems with a large
data imbalance. In such cases, the Area Under the Precision
Recall Curve (AUPRC) metric is often preferred as an
alternative. This AUPRC metric is used in this work for
tuning the model hyperparameters.

IV. RESULTS AND DISCUSSION

The sensitivity and specificity scores for all experiments
with the ANN model are shown in Table I. They can also
be summarized using the informedness metric as shown in
Fig. 1. The experiments were also run with an LR model
and an RF model, both of which yielded similar results.
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Fig. 1. Informedness metric for detection of OSA, CSA and hypopnea
events in respiratory signals. The nasal cannula and nasal thermistor yield
the best overall performance.

The results show that OSA and CSA events are in general
the easiest to automatically detect whereas hypopnea events
are more difficult. Constructing one model to detect several
different types of apnea such as a combination of OSA and
CSA or a combination of OSA, CSA and hypopnea reduces
the predictive power of the model. This is due to the different
origins of the events and resulting differences in features. As
the hypopnea annotation is a combination of obstructive and
central hypopnea, improvements could be made by creating
a separate model for these two types of event.
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The best performing signals across all apnea types are the
direct measurements of respiration using the nasal cannula
and the nasal thermistor. Each of the respiration belts also
offers a good performance individually, but the combination
of abdominal and thoracic respiration into the Vtot signal
produces even better results. The performance of EDR1 for
the detection of CSA is similar to the direct measurements.
However, for the other cases, the performance of the EDR
signals is substantially lower. Although literature suggests
a strong performance, it is very susceptible to noise in
realistic clinical settings. The bio-impedance measurement
demonstrates promising performance both with OSA and
CSA, as well as with the harder-to-detect hypopnea events.

On top of the predictive power of the different respiratory
signals, the form factor also has to be taken into account.
Although the directly measured respiratory signals provide a
high predictive power, they are less comfortable and restrict
the patient during the night. The EDR and bio-impedance
signals on the other hand can be measured using a small
sensor without inflicting too much discomfort on the patient.

This study represents a first step towards developing home
monitoring devices. As mentioned in the introduction, a
full PSG recording is uncomfortable and might lead to an
unrepresentable night of sleep. However, the full PSG setup
is required by sleep technicians to accurately annotate the
signals. In future steps, the results from this study can be
validated using small unobtrusive devices that only measure
relevant respiratory signals.

The comparison in this work is useful to guide devel-
opment of sleep apnea detection hardware and software.
However, it is important to note that as these classification
models only use respiratory information, they cannot cor-
rectly diagnose sleep apnea as other factors (such as oxygen
saturation) have to be taken into account. The limitation of
only using respiratory information leads to false positives
caused by the erroneous detection of short events. The
AASM guidelines only allow the annotation of events longer
than 10 seconds. Nevertheless, short events can easily be
filtered out in a later stage after which the larger events can
be used to compute the AHI.

V. CONCLUSION

Sleep apnea is one of the most common sleep disorders
and detection is important as the health risks can be severe.
However, beds and trained staff are limited. In this work,
we investigated and compared the predictive power of respi-
ratory signals to either quickly indicate interesting sections
to trained staff in a full PSG or to screen potential patients
in their home. The results show that typical PSG signals
have the largest predictive power. However, signals from less
obtrusive sensors such as the ECG derived respiration can
also be used although the predictive power is significantly
less due to the influence of several types of noise. The bio-
impedance signal, consisting of only a small sensor placed
on the patients chest, shows promising performance. These
results can be used to further guide algorithm and hardware

developments for the automated detection of sleep apnea in
home environments and to provide practical insights into
which respiratory signals might be useful.
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