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Abstract—Non-intrusive load monitoring detects active ap-
pliances in a household (and their power consumption) from
measuring the aggregated power at just one point in that
household. Our previous works focused on classifying a single
appliance, assuming that the voltage and current trace could be
isolated from an aggregated signal by considering the difference
in current before and after the event. In this paper, we show that
this assumption holds and that it is a viable approach in practice.
We experimentally validate this for two classification methods we
proposed earlier: (1) random forests using elliptical Fourier de-
scriptors of the appliances’ VI trajectories and (2) convolutional
neural networks using the appliances’ VI images. We benchmark
these approaches on the aggregated data from the 2018 version
of PLAID. We obtain, respectively for each of these classifiers, a
maximal Fmacro-measure of 85.31% and 87.95 %. We also show
that using submetered data for training does not improve the
performance.

Index Terms—Non-intrusive load monitoring, appliance clas-
sification

I. INTRODUCTION

A basic but crucial step towards increased energy efficiency

and savings in residential settings, is to have an accurate

view of energy consumption. To monitor residential energy

consumption cost-effectively, i.e., without relying on per-

device monitoring equipment, non-intrusive load monitoring

(NILM) provides an elegant solution. It identifies the

per-appliance energy consumption by first measuring the

aggregated energy trace at a single, centralized point in the

home and then disaggregating this power consumption for

individual devices using machine learning techniques. Quite

often, two required steps are event detection and appliance

classification.

Classifying active appliances for NILM is mostly done by

extracting features from the monitored data and training a

machine learning classifier. These features are often extracted

once it is detected that a device is switched on/off [1]. The

type of extracted features heavily depends on the sampling

rate of the measurements. When using low frequency data

(� 1 Hz), the most common features are the power levels and

the on/off durations [2]. A drawback of this approach is that

only energy-intensive appliances can be detected. This can

be alleviated by performing higher frequency measurements

at the cost of an increased data storage rate and more

complex data analytics, i.e., the voltage and current signals

sampled at a frequency higher than 1 Hz are measured.

From these signals, features like the harmonics [3] and other

frequency components [4] from the steady-state and transient

behavior can be calculated. More recently, the possibility

to consider voltage-current (VI) trajectories has also been

considered [5]–[7]. Once the features are extracted, they

can be fed into different classification methods, like support

vector machines (SVM) [8], decision trees [9], or nearest

neighbors [10]. In order to distinguish appliances based on

their VI trajectories, the voltage and current signals need to

be sampled at a relatively high frequency.

In our previous work, the problem of classifying appliances

based on their VI trajectories is addressed as an image

recognition problem. A first work is based on detecting

contours [11]. It represents the trajectory as a pixelated

image and describes a classical method for image recognition

that: (1) finds the contours, (2) calculates the elliptic

Fourier descriptors of the contours, and (3) trains machine

learning methods using these elliptical Fourier descriptors. A

second work performs image recognition using convolutional

neural networks (CNNs) [12]. CNNs are often used for

classification tasks in computer vision, due to their excellent

discriminative power in classifying images [13]. It is shown

that a CNN approach can also be valuable in a NILM context

to discriminate active appliances based on the weighted

pixelated VI image.

Ideally, to test the methods proposed in our previous

papers, a dataset having high frequency aggregated and high

frequency sub-metered v and i signals should have been used.

However, when these methods were developed, no existing

public dataset included both. For this reason, both the 2014

version of PLAID [14] and WHITED [15] were considered

as datasets to benchmark the methods as they both contain

high frequency sub-metered data. This research on appliance

classification was a first step towards a more realistic NILM

setting starting from the aggregated power measurements.

It was a very meaningful step, as typically appliances are

turned on/off one at a time, and the single appliance current

(and thus VI trajectory) can be extracted from the aggregated
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Fig. 1: The aggregated current and voltage when an appliance is (a) activated and (c) deactivated, together with the current

and voltage of the appliance causing the event (b) and (d).

measurements by considering the difference in current before

and after the event. In this paper, we experimentally validate

this idea by applying the methods on the high frequency

aggregated data of PLAID, which will be published soon.

(Note, that also the concurrent work [16] confirmed that single

appliance current extracted from aggregated measurements

can be successfully used for NILM).

Section II explains first how the current and voltage signal

of a single appliance can be extracted from the aggregated

data, second it restates how the current and voltage signal

are transformed into a pixelated or weighted pixelated image,

and at last, it briefly discusses the image recognition methods.

For a complete discussion, we refer the reader to the original

papers [11], [12]. The evaluation setup is described in Sec-

tion III. The results of the two earlier published methods on

aggregated data are presented in Section IV. Furthermore, we

investigate if a better performance is obtained when training

uses submetered data instead of aggregated data. Section V

concludes this paper.

II. METHODOLOGY

This section briefly discusses the methods presented in [11]

and [12]. Both methods for appliance classification cast the

problem as an image recognition problem. Thus, the VI tra-

jectory of an appliance needs to be transformed into a pixelated

or weighted pixelated image, which are respectively taken as

input of both methods. First, we describe how the current

and voltage signal of a single appliance can be extracted

from the aggregated current and voltage signals. Then, the

preprocessing to obtain images from the current and voltage

signal is discussed. After that, the respective methods are

explained.

A. Obtaining submetered current and voltage signal
In order to obtain the pixelated or weighted pixelated VI

images of individual appliances from aggregated data, the

current and voltage before and after all events are selected.

These events can be present in the dataset as labels, or one

can detect them using a robust event detection method [17].

The current and voltage before the event (ibefore and vbefore)

are respectively one current and voltage cycle happening one

second before the event. These two cycles are aligned at a

zero crossing of the voltage. The extraction of the current and

voltage after the event (iafter and vafter) is performed in the

same way for the cycles occurring one second after the event.

If the event is caused by the activation of an appliance (the

maximum of iafter being higher than the maximum of ibefore)

and if only one appliance is activated, then the current i and

voltage v of the activated appliance is obtained by:

i = iafter − ibefore (1)

v = vafter (2)

If the event is caused by the deactivation of an appliance (the

maximum of ibefore being higher than the maximum of iafter)

and if only one appliance is deactivated, then the current i and

voltage v of the deactivated appliance is obtained by:

i = ibefore − iafter (3)

v = vbefore (4)

Figure 1 gives an example. From the obtained per-

appliance/submetered i and v signals, the pixelated or

weighted pixelated VI image is created.

B. Obtaining VI image from current and voltage

The VI trajectory of an appliance is obtained by first plotting

the voltage against the current for a defined time period when

the appliance is turned on and in steady state. The VI trajectory

is then converted into a VI image (n× n matrix) by meshing

the VI trajectory. If a pixelated VI image is created, each cell

of the mesh is assigned a binary value that denotes whether or

not it is traversed by the trajectory. If a weighted pixelated VI
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Fig. 2: (a) The voltage and (b) current of a CFL and the

transformation from (c) the continuous VI trajectory into (d)

the pixelated and (c) weighted pixelated VI image for n = 15.

image is created, each cell of the mesh is assigned a value that

denotes the number of times it is traversed by the trajectory.

This is shown in Figure 2.

C. Elliptical Fourier Descriptors

In [11], the image classification problem is rephrased as

an object recognition problem. The contours of an object are

identified from the image, characterized by elliptic Fourier

descriptors and then classified with a label. In this context,

object recognition is used to recognize the contours of a VI

trajectory in the pixelated image, and to describe them using

elliptical Fourier descriptors. A random forest classifier uses

these descriptors to classify the objects.

The contour of an object in an image is a closed curve that

forms the boundary of that object. Figure 3 shows the detected

contours of the VI trajectory of a compact fluorescent lamp.

This example has three contours. To avoid that the trajectory

touches the border, extra pixel rows and columns are added to

the sides. (Otherwise this would result in two separate outside

contours instead of one.) Only one contour can be used to

classify the appliances because not all appliances have the

same amount of contours, while this is required for the use of

machine learning methods. For that reason, the outer counter

is chosen, since it is a closed curve that resembles the shape
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Fig. 3: The identification of the VI trajectory contours of a

CFL. Only the outer contour is used for object classification.

of a smoothed VI trajectory. In contrast to the original VI

trajectory, all points on the contour are separated uniformly,

such that the Euclidean distance between neighbouring points

on the contour is the same.

Once the contour is identified, elliptical Fourier descriptors

(EFD) are used to characterize the corresponding appliance.

EFDs define the contour as the sum of a certain number of

ellipses (e) required to mimic the shape, and each ellipse is

defined by four parameters (two each for the x- and y-axis).

The first ellipse describes the overall shape, location, size,

and rotational orientation of the contour. Additionally, more

ellipses can be included to capture more detailed information

about the contour’s complexity. Figure 4 shows the reconstruc-

tion of the contour when using up to e = 4 harmonics. The

approximated contour better resembles the original contour

when more harmonics are included. The reader is referred to

[18], [19] for mathematical details.

The object recognition results in a vector of size 4 · e. This

vector can be used as input for classification algorithms. As

our previous work [11] shows that the random forest obtains

the best performance, this is the only classifier that will be

used to classify the descriptors. A random forest (RF) is an

ensemble technique that classifies the data using a collection

of decision trees. Each decision tree is trained on a subset of

the dataset that has the same size as the original training set,

but samples are drawn with replacement. At each node of the

decision tree, a feature is selected and the tree is traversed

downward (either following left/right branch) by comparing

its value to a threshold. Given a new sample, the output of

each decision tree is averaged to obtain the final prediction.

D. Convolutional Neural Networks

Instead of converting the VI trajectory into a pixelated

image, it can also be converted into a weighted pixelated

image. A CNN can then be applied in order to classify

the images. CNNs are a type of neural network (NN) that

are often used in computer vision. To create a CNN from

a NN, convolutional layers are added. The main difference

between a convolutional and fully connected layer is that

each node in a convolutional layer is connected to a small

region of the input matrix exploiting local correlation, making

them highly suitable for classifying images [13]. After a

convolutional layer, it is common to implement a pooling
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Fig. 4: The original (orange) contour of the VI trajectory of a CFL together with the approximated (blue) contour of the VI

trajectory with increasing number of coefficients.

Fig. 5: The architecture of the implemented CNN taking as input the VI image.

layer to downsample the convolved matrix. This reduces the

spatial size of the representation and the amount of parameters,

and hence also manages overfitting. This downsampling is

achieved by sliding a d×d window over the input (here, with

d = 2) and each time outputting the largest element of the

window.

The CNN implemented in this chapter has the following

structure, see Figure 5: it takes as input the weighted pixelated

VI image (a n×n matrix), and has the following hidden layers:

a convolutional layer with f filters of size 5, a pooling layer,

another convolutional layer with f filters of size 5, another

pooling layer, a fully connected layer with n2 nodes and an

output layer with k nodes. The number of filters f is set to 50.

The number of output nodes k is determined by the number

of different appliances present in the dataset (i.e., the number

of classes). An analysis of alternative parameter settings for f
showcased no significant changes in the results. Since the class

labels are categorical, the cost function of the implemented

CNN is defined as the cross-entropy function [20].

III. EVALUATION SETUP

This section first describes the data on which the proposed

methods is benchmarked. After that the used evaluation metric

and the research questions are stated.

A. Data

The high frequency aggregated data in the Plug-Load Ap-

pliance Identification Dataset (PLAID) is measured at 30 kHz

at one location and contains 1478 measurements (activations

or deactivations) for 12 different appliances. Additionally, the

12 different appliances are submetered, each 10 times leading

to 130 events (the soldering iron leads to two start-up events).

In this dataset, the activations and deactivations (events) are

labelled making it easy to calculate the current and voltage

signal of the appliance causing the event. This data is publicly

available.1 For this paper, the aggregated data is obtained from

the files with id ranging from 1 to 324 (included), and the

submetered data from the files with id ranging from 1794 to

1925 (included).

It is important to note that although the results presented

in [11] and [12] are also obtained using data from PLAID, they

cannot be compared with the results obtained in this paper, as

a different part of the dataset is used. Here, only the appliances

having both submetered and aggregated are used. Whereas for

the previous works, the appliances only had submetered data.

Thus none of the appliances tested in the previous work, are

tested here, making comparison useless.

B. Evaluation metrics

As proposed in [21], the F -measure is used to evaluate

the classification performance, which is calculated for each

appliance type separately:

Fi = 2 · precisioni · recalli
precisioni + recalli

, ∀i ∈ [1, . . . , a] (5)

precisioni =
TPi

TPi + FPi
(6)

recalli =
TPi

TPi + FNi
(7)

where TPi, TNi, FPi, and FNi are respectively the true

positives, true negatives, false positives, and false negatives

for appliance type i. The number of different appliance types

is a. The F -measure for a perfect classifier is 1, whereas a

random classifier yields an F -measure of 0.5. This measure

provides information about the confusion between instances.

1www.plaidplug.com
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Its magnitude is mainly determined by the number of correctly

labeled samples, but tells us nothing about the instances that

are correctly labeled with a 0 (the true negatives). In other

words, the precision and recall only focus on the positive class

[22]. In the end, the average over all the appliance types’ F -

measure is taken, leading to the so-called macro-average.

Fmacro =
1

a

a∑

i=1

Fi (8)

where a is the total number of different appliance types.

Furthermore, the confusion matrix is plotted showing the

correct predictions (the diagonal) and the types of incorrect

predictions (the rows represent the predicted class and the

columns the real class). This matrix gives a clear view on

which appliances are confused with each other. The F -measure

can be calculated from the confusion matrix.

C. Research Objectives

Objective 1: For each method, does the classification

of the appliance types works with these extracted features?

We investigate this by calculating the F -measure for the two

described classification methods. Additionally, is submetered

data necessary for training the algorithms or is aggregated data

sufficient? We investigate this by comparing the performance

of the algorithms when trained respectively using submetered

or aggregated data. To obtain the performance of the first case,

the classification algorithms are trained using the submetered

data and tested using the aggregated data. To obtain the

performance of the second case, the classification algorithms

are trained and tested using respectively 3/4th and 1/4th of

the data. This is repeated 4 times and each fold is created

by sampling without replacement (also known as 4-fold cross

validation). As a result, each sample of the aggregated data

belongs once to the test data. If we store the prediction of each

test sample, we are capable to calculate the Fmacro-measure

which can be compared to the Fmacro-measure calculated in

the previous case.

Objective 2: For each method, which parameters lead

to the best performance? We investigate this by altering the

parameters image size and number of EFDs, and by comparing

the obtained Fmacro-measures.

Objective 3: Which method, the method using the EFDs

or the CNN performs the best? We investagte this by compar-

ing the obtained Fmacro-measures.

IV. RESULTS

This section reports the results obtained by the method

using the EFDs and by the CNN and discusses each research

qeustion posed in the previous section.

A. Objective 1

Figure 6 shows the Fmacro for the random forest that uses

the EFDs as input and that is trained on submetered and

aggregated data for different image sizes. Figure 7 shows

Fmacro for the CNN when using aggregated or submetered data

for training, and when using varying images sizes.
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Fig. 6: The Fmacro of the random forest classifier using an

increasing number of EFDs e for different image sizes and

when trained on submetered data (left) or aggregated data
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Fig. 7: The Fmacro for the aggregated data of the 2018 version

of PLAID when CNN for f = 50 and varying image size n
is used. The training is done using submetered or aggregated

data.

For both methods, we can state that appliance classification

using the extracted submetered voltage and current signals

from the aggregated signals works. Additionally for both

methods, the results show that training directly on the ex-

tracted traces from the aggregated measurements works better

than training on the submetered data. This can be explained

intuitively by the fact that when training uses aggregated data,

the training data contains the same noise (caused by other

active appliances) as present in the test data. This is important

for practical reasons, as in a household, it is not achievable to

submeter all different appliances.

B. Objective 2

In Figure 6, we can see that using three or more EFDs

does not significantly impact the accuracy for random forest

in terms of the Fmacro-measure. The pixelated image size is

altered between [16 × 16, 20 × 20, 30 × 30, 40 × 40, 50 ×
50, 60 × 60]. As shown, increasing the image size does not

lead to an improvement in the Fmacro when using EFDs as

input for random forest. When trained on submetered data, the

EFDs calculated from the contours from the smallest image

(16 × 16) lead to the best Fmacro, and those from the largest

(60 × 60) to the worst. An intuitive explanation would be

that the lower resolution of the images masks the difference

between the submetered and aggregated data. When trained on

aggregated data, the EFDs calculated from the contours from

the image with size 30×30) lead to the best Fmacro, and those
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from the smallest image (16× 16) to the worst. We conclude

that once a certain resolution is obtained, adding information

by increasing the resolution is not useful and leads to a lower

performance. The best Fmacro(= 85.31%) is obtained when the

random forest is trained on aggregated data and the 3 EFDs

are calculated from images of the size 30× 30.

In Figure 7, we see that using image sizes larger than 30×30
does not considerably improve the Fmacro-measure, just like

was the case when using EFDs as input. The best Fmacro(=
88.0%) is obtained when the CNN is trained on aggregated

data and images of the size 30× 30 are used.

Additionally, we also plotted the F -measure per appliance

and the confusion matrix for each method when trained using

submetered and aggregated data. Figure 8 shows the F -

measure per appliance and the confusion matrix for the random

forest using as input 3 EFDs extracted from images with

size 30 × 30, and when using submetered and aggregated

data for training. When using submetered data for training

(Figure 8 (a)), the water kettle and coffeemaker are confused

with each other (both resistive heaters). Additionally, some

other confusion exists: the CFL is confused with the laptop

charger (both non-linear loads) and the AC with the soldering

iron. When training uses aggregated data (Figure 8 (b)), a lot

of confusion is resolved. Now only the water kettle and the

coffeemaker are confused with each other, and the CFL with

the laptop charger.

Figure 9 shows the F -measure per appliance and the con-

fusion matrix when using submetered and aggregated data for

training, and when the image size of 30 × 30 is used. When

using aggregated data for training (Figure 9b), only the the

water kettle and the coffeemaker are confused with each other

(both resistive heaters) in respectively 45.3% and 31.9% of the

samples. When using submetered data (Figure 9a)), 46.6% of

the coffeemaker samples are confused with the water kettle and

13.3% the other way around. Additionally, also the ILB and

AC are confused sometimes with the coffeemaker (respectively

15.7% and 9.7%). Further research is necessary to explain why

there is an asymmetry in the confusion and why the confusion

is reduced when using aggregated data for training compared

to using submetered data.

C. Objective 3

When using submetered data for training, the Fmacro of the

CNN (80.4%) is significantly higher than the one obtained

by the method based on EFDs (72.5%). This difference is

caused by the fact that the CNN is better in classifying the

AC and there is less confusion between the water kettle and

the coffee maker. When using aggregated data for training,

the Fmacro of the CNN (88.0%) is slightly higher than the

one obtained by the method based on EFDs (85.3%). Both

the CNN and the method based on EFDs, confuse the water

kettle and coffee maker with each other, but the CNN is better

in classifying the CFL. This difference in performance is also

visible in the previously published work when training and

testing was performed on submetered data: the Fmacro is 66.2%
when using 3 EFDs as input for a random forest [11], and

77.6% when using CNN [12]. Again, the CNN outperforms

the method using the EFDs. Note that these last two results can

not be compared in terms of absolute performance measures

with the results mentioned in this paper, as submetered data

is used for training and testing.

V. CONCLUSION

In this paper, we validate that the single appliance current

and voltage can be extracted from the aggregated measure-

ments by considering the difference in current before and

after the event, assuming that only one appliance is turned

on/off one at a time. We tested appliance classification on such

submetered signals extracted from aggregated measurements

and evaluated two classification methods: (1) the random

forest using elliptical Fourier descriptors of the appliances’

VI trajectory [11] and (2) the CNN using the appliances’ VI

images [12], on the aggregated data in PLAID. An Fmacro-

measure of 85.3% and 88.0% are obtained respectively by

the two methods, validating that appliance classification using

the extracted single appliance current and voltage works

reasonably well.

An Fmacro-measure of 72.5% and 80.4% is obtained respec-

tively by the two methods when submetered data is used for

training instead of aggregated data. Using aggregated data for

training leads thus to a better performance, indicating that the

gathering of submetered data is unnecessary.

In addition for both methods, it was also found that in-

creasing the image size above 30× 30 does not lead to better

performance. A similar conclusion is found when the number

of EDFs exceeds three.

When comparing the two methods, it is found that the CNN

performs better than the method using the EFDs.
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Fig. 8: The F -measure per appliance and confusion matrix for the aggregated data in the 2018 version of PLAID with e = 3
EFD components, the image size is 30 × 30 and the random forest is trained using (a) submetered, and (b) aggregated data.

AC = air conditioning, CFL = compact fluorescent lamp, ILB = incandescent light bulb
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Fig. 9: The F -measure per appliance and confusion matrix for the aggregated data in the 2018 version of PLAID when the

CNN for n = 30 and f = 50 is used, and is trained using (a) submetered, and (b) aggregated data . The number of samples per

appliance type is mentioned between the brackets. AC = air conditioning, CFL = compact fluorescent lamp, ILB = incandescent

light bulb
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