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Abstract Due to the rapid growth of wireless networks

and the dearth of the electromagnetic spectrum, more

interference is imposed to the wireless terminals which

constrains their performance. In order to mitigate such

performance degradation, this paper proposes a novel

experimentally verified surrogate model based cognitive

decision engine which aims at performance optimization of

IEEE 802.11 links. The surrogate model takes the current

state and configuration of the network as input and makes a

prediction of the QoS parameter that would assist the

decision engine to steer the network towards the optimal

configuration. The decision engine was applied in two

realistic interference scenarios where in both cases, uti-

lization of the cognitive decision engine significantly out-

performed the case where the decision engine was not

deployed.

Keywords Cognitive decision engine � Surrogate
modeling � Interference management � Dynamic spectrum

access � WiFi � WLAN

1 Introduction

With the increasing demand of the scarce electromagnetic

spectrum and rising interference effects, cognitive radios

(CR) have become a promising solution to address spec-

trum over-utilization. To this end, cognitive solutions are

of paramount importance in wireless networks to ensure

that their performance is not degraded by the external

interference, ensuring continuous connectivity and pro-

viding a good Quality of Service (QoS). A well-established

component that targets optimal network communication is

the Cognitive Decision Engine (CDE). The CDE is an

intelligent module that aims to optimize network perfor-

mance objectives (QoS) by making informed decisions

upon changes in the wireless environment.

Three important aspects of a CDE comprise: (1) obser-

vation, (2) reconfiguration or adaptability and, (3) cogni-

tion which includes awareness, reasoning and learning [1].

In literature, these three characteristics have been addres-

sed using various approaches, e.g. rule-based [2], case-

based [3–5], search-based [6], knowledge-based [4] rea-

soning systems and many others. Such methods often

require a certain set of representative cases or domain

expert knowledge [7] to derive important analytical for-

mulas or rules that steer the decision making process. The

reader is referred to [1] for a detailed survey.

In this paper, a real-time CDE is developed that is based on

surrogate modeling of the QoS. Moreover, the surrogate

model is built dynamically, unlike in the machine learning

approach where the models are static. Further, the CDE per-

formance is experimentally tested. Specifically, the developed

surrogate model-based CDE reconfigures the transmission

parameters of a wireless LAN system in response tomeasured

changes in the environment, with the goal to maximize the

QoS at all times. The experimental demonstration and
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validation is done via two realistic use cases in a wireless

testbedwhere the proposed algorithm is shown to optimize the

performance of wireless links by changing various transmis-

sion parameters of the wireless terminals using surrogate

model predictions. To the authors’ knowledge, this paper is

the first to describe, develop, and experimentally test such

dynamical surrogate model-based CDE.

This paper is organized as follows: after reviewing the

current literature in Sect. 2, Sect. 3 describes the CDE. This

includes a description of the architecture and a discussion on

the two main components: the surrogate model and the

optimization algorithm. In Sect. 4, two real-life examples

are provided in which experiments are performed in a

wireless testbed to show the applicability and performance of

the proposed CDE. Section 5 concludes this article.

2 Related works

In the context of cognitive frameworks that address effi-

cient interoperability of homo/heterogeneous wireless net-

works, spectrum monitoring and decision making are the

central topics addressed by the authors in the current lit-

erature. Radio environment maps (REMs) [8] play a key

role for environment monitoring in many cognitive radio

solutions. REMs represent an integrated database providing

information such as spectrum availability, regulations, and

also the degree of channel utilization [8].

The decisionmakingmechanisms in the present literature

exploit a multitude of Artificial Intelligence (AI) algorithms

to derive proper decisions for operation of the cognitive

wireless network. Artificial Neural Networks (ANN) have

been used for radio parameter adaptation in CR [9, 10]. The

ANN determines radio parameters for given channel states

with three optimization goals, includingmeeting the bit error

rate (BER), maximizing the throughput and minimizing the

transmit power. In [11], it is proposed to use the ANN to

characterize the real-time achievable communication per-

formance in CR. Since the characterization is based on

runtime measurements, it provides a certain learning capa-

bility that can be exploited by the cognitive engine. The

simulation results demonstrate good modeling accuracy and

flexibility in various applications and scenarios. Moreover,

in [12], the authors propose two ANN-based learning

schemes which aim at optimizing the end user’s data rate in

dynamic environments by changing certain input parameters

such as the radio access technology and its corresponding

frequency. The two schemes are validated by two (unseen)

data sets which are different to the two (seen) data sets which

were used in the learning phase. The validation results shows

that the ANN-based learning schemes pay off in maintaining

the data rate of the end user in a cognitive radio network.

Game theory techniques have also been widely used in

the context of cognitive radios. In [13], population game

theory has been applied to model the spectrum access

problem and develop distributed spectrum access policies

based on imitation, a behavior rule widely applied in

human societies consisting of imitating successful behav-

iors. In [14], the authors study the spectrum access problem

in cognitive radio networks from a game-theoretical per-

spective. The problem is modeled as a non-cooperative

spectrum access game where secondary users simultane-

ously access multiple spectrum bands left available by

primary users, optimizing their objective function which

takes into account the congestion level observed on the

available spectrum bands.

Apart from all aforementioned AI methods, there are

also methods in literature that are based upon ranking the

channels in order of their capacity. The ranking is done by

characterizing the channel activities and making estima-

tions of the capacity accordingly. In particular, the authors

in [15] propose a spectrum decision framework for cog-

nitive radio networks which addresses QoS management of

the secondary users in response to certain events such as

appearance of a primary user or degradation of the QoS.

Thus their proposed framework not only accounts for

consideration of primary users, but also maintains the QoS

delivered to the secondary users by making spectrum

decision according to the channel activities. The current

paper is therefore a logical continuance and extension of

the work on (ANN) model based learning schemes [12]

where we share a common architecture with [15] in tack-

ling interference and optimizing the QoS. We extend the

concept by bringing cognitive radio techniques for QoS

management to the Industrial Scientific Medical (ISM)

band WLANs as well as incorporating REMs and surrogate

modeling based decision making to the framework.

3 Cognitive decision engine

3.1 Architecture

A schematic overview of the decision engine is shown in

Fig. 1. The System under test is the wireless system that

needs to be optimized in a dynamically changing envi-

ronment. The Radio Environment Map (REM) is a map that

continuously aggregates all information that is monitored

from the environment through spectrum sensing, network

sniffing, and benchmarking tests [16]. Based on the REM

map, a set of meters or measurable parameters (MP) can be

extracted that allow the CDE to identify the current state of

the environment. The Cognitive decision engine (CDE) is a

self-learning decision engine that uses a surrogate model to

optimize the QoS by defining suitable cognitive actions in

Wireless Netw

123



response to the MP parameters that are derived from REM.

These actions are enforced by tuning of a set of knobs or

control/transmission parameters (CP) that specify the

configuration of the wireless system. By storing the out-

come of each action, the algorithm collects data samples

that quantify the QoS behavior of the wireless system. The

surrogate model is an analytical black- box model that

characterizes and approximates this behavior. It is an input-

output mathematical function that models the relation

between the MP and CP parameters as inputs on one hand,

and the resulting QoS performance of the wireless system

that would be observed as an output on the other hand.

Rather than building a static set of models upfront, a self-

learning modeling strategy is thus adopted, limiting the set

of a priori experiments. The outcome of the actions that

were executed by the optimization process are used in an

online feedback loop to update/improve the accuracy of

surrogate model during its operation (online). The predic-

tive surrogate model generalizes the obtained knowledge

towards environmental conditions and configurations that

are different from those that were observed during training

by means of interpolation. This system allows a real-time

optimization of the QoS performance by tuning the CP

parameters of the wireless system according to the MP

parameters that are obtained from the REM. A more

detailed explanation of these components will be provided

in the later sections.

3.2 Surrogate model

3.2.1 Notational conventions

In order to model the QoS performance of the wireless

system, a set of data samples must be collected by per-

forming a limited set of k ¼ 1; . . .;K experiments on a

wireless testbed (w-iLab.t) as described in Sect. 4. Each

experiment k is defined by a vector of i ¼ 1; . . .; nc knobs

spanning the control space Ck ¼ fCi
kg, and a vector of

j ¼ 1; . . .; nm spanning the meter space Mk ¼ fMj
kg. As

mentioned in the previous section, the Ck space comprises

the control parameters that must be configured by the

decision engine, whereas the Mk space comprises a set of

features that are extracted from the REM. The union of the

control space C and the meter space M is called the

parameter space. The outcome of each experiment k cor-

responds to a resulting QoSk performance value. Depend-

ing on the ultimate usage of the wireless network, the target

QoS parameter may be throughput, delay, jitter, or a

combinatorial metric such as audio or video quality. Each

experiment k is referred to as a data sample and will be

represented by a tuple: fCk;Mk;QoSðCk;MkÞg.

3.2.2 Surrogate model type

All experiments that are performed constitute a dataset that

will be used to build a surrogate model f such that

f ðCk;MkÞ ¼ QoSk. As surrogate models must be built and

updated in real time, it is important to select an interpo-

lation strategy that is simple and fast. It should (1) not

require a lot of model tweaking; (2) be able to build models

that are sufficiently accurate; (3) be robust towards noise

and imperfections in the data; (4) have acceptable running

times. In literature, many modeling algorithms are descri-

bed, such as e.g. kriging [17], artificial neural networks [18,

19], radial basis function [20], etc. Most of the time, they

require a trial-and-error approach for selecting a suit-

able set of hyperparameters (e.g., the number of neurons,

the number of hidden layers, the model complexity, etc.).

Also the model selection and cross-validation process can

be very time consuming. With these considerations in

mind, it is preferable to consider local interpolation

schemes such as multi-linear interpolation [21], tesselation-

based simplicial interpolation [22] and Shepard’s interpo-

lation [23, 24]. The Shepard interpolation algorithm was

found to be the most adequate approach because of the

simplicity of the underlying principle, and the speed in

calculation. By using Shepard’s interpolation, a model is

built that exactly predicts the QoS performance for

experiments that were performed previously, and approx-

imates the QoS for experiments that have not yet been

performed (i.e. different values of C and M), based on a

distance-based similarity measure and an appropriate nor-

malization of the parameter space.

3.2.3 Model building

In order to build the surrogate model, a representative set

of data samples must be collected to build a model having

Fig. 1 A high-level schematic of the cognitive decision strategy
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sufficient accuracy to make reliable predictions of the QoS.

Data samples are collected in such a way that the model

accuracy can be maximized while minimizing the number

of experiments needed. This happens in an online training

phase that is executed prior to the deployment of the

decision engine. In sequential steps, a well-chosen set of

experiments are performed by making a balanced trade-off

between two different criteria, namely exploration and

exploitation.

Exploration phase In the exploration phase, different

settings of the knobs C are explored in order to cover the

parameter space as evenly as possible. The idea is that the

most informative experiments are those that are as different

as possible from those that were performed previously.

Thereto, a distance-based exploration criterion is used to

let the dataset grow over time. First, a large set of candidate

settings is generated using a Monte Carlo method for the

knobs in such a way that they cover the entire control

space. For all the candidate settings of the knobs C, the

distance of each candidate point to all other data samples in

the set is calculated and the farthest point is selected. So, if

an nc-dimensional control space with d ¼ 1; . . .;D discrete

candidate settings for the knobs is considered, then the

proposed setting of the knobs is the one that maximizes the

minimum distance to the available data samples

k ¼ 1; . . .;K.

dbest ¼ argmax
d

min
k

hdk

� �
ð1Þ

where hdk represents the Euclidean distance between data

sample k in the dataset and candidate setting d. The values

of the meters are set to those at current time M ¼ Mcurrent.

hdk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnc
i¼1

ðCi
d � Ci

kÞ
2 þ

Xnm
j¼1

ðMj
current �M

j
kÞ

2

vuut ð2Þ

Once this exploratory setting dbest of the knobs is applied

on the system under test, the resulting QoS is evaluated and

the outcome is added as an additional data sample to the

dataset. As the environment changes over time, the meters

Mcurrent will change dynamically over time and sequen-

tially data samples are added to the dataset. This leads to

more accurate predictions of the surrogate model built from

it.

Exploitation phase As the algorithm collects more data

samples, it can also exploit data from previous experiments

to make the model more accurate in those regions where

the optimum configurations (i.e. those with higher QoS

values) are located. To this end, the output of the inter-

mediate surrogate models can be used to identify these

settings. Just like in the exploration phase, the meters are

monitored and a large set of candidate settings for the

knobs are generated using Monte Carlo in such a way that

they cover the entire control space. For all discrete candi-

date settings d of the knobs C, the surrogate model is

evaluated and the setting Copt is chosen for which the

Shepard’s model predicts the highest PQoS ¼
f ðCd;McurrentÞ value.
Copt ¼ argmax

d

f ðCd;McurrentÞ ð3Þ

The values of meters Mcurrent in (3) are again set to those

at the current time. Once the optimal setting Copt of the

knobs is applied on the system, the resulting

QoSðCopt;McurrentÞ value is evaluated and the outcome is

compared to the predicted PQoS ¼ f ðCopt;McurrentÞ of the
surrogate model.

jf ðCopt;McurrentÞ � QoSðCopt;McurrentÞj\s ð4Þ

If the discrepancy of the outcome is larger than a prede-

fined threshold s, then the prediction of the model was not

sufficiently accurate and a corresponding data sample

fCopt;Mcurrent;QoSðCopt;McurrentÞg is added to the dataset.

If the surrogate model prediction was sufficiently accurate,

then the experiment can be discarded. This step improves

the accuracy of the surrogate model in regions where

optima are located.

3.3 Optimization algorithm

Once a surrogate model is considered to be sufficiently

accurate, it can be deployed in the cognitive decision

framework for real-time optimization. The optimization

algorithm (see Fig. 1) continuously monitors the QoS

performance and the values of M that are changing

dynamically over time. If a network performance

degradation is detected, a genetic algorithm can be used

to solve (3) and to determine the optimum value Copt of

the knobs [25]. For use-cases with a relatively small

number of parameters, one can generate a large set of

candidate settings for the knobs using Monte Carlo in

such a way that they cover the entire control space, from

which the optimum configuration can be chosen. This

takes only a fraction of a second because the Shepard

model is an analytical function that is fast to evaluate.

The use of genetic algorithms is a possible way to

economize on the number of function evaluations and to

speed-up the optimization in the case of complex net-

works with many parameters. In cases where the result

of the optimization step was unsuccessful in predicting

the QoS, the outcome of the experiment can be added as

additional data to improve the model predictions in an

online fashion.
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4 Experimental examples: practical case studies

4.1 Setup configuration

All practical case studies are conducted in a pseudo-

shielded testbed environment w-iLab.t [26] in Ghent,

Belgium. The nodes in the testbed are mounted in an open

room (66 m � 20.5 m) in a grid configuration with an

x-separation of 6 m and a y-separation of 3.6 m. Figure 2

shows the ground plan of the test lab with an indication of

the location of the nodes. Each node has two Wi-Fi inter-

faces (Sparklan WPEA-110N/E/11n mini PCIe 2T2R

chipset: AR9280). Furthermore, a ZigBee sensor node and

a USB 2.0 Bluetooth interface (Micro CI2v3.0 EDR) are

incorporated into each node.

The CDE is implemented in MATLAB and runs on a

separate computer. It writes settings for control- or trans-

mission parameters into an SQL database. A Java program

then continuously polls the database for input, transforms

the command into an OMF script which is executed as an

experiment on the testbed and writes the outcome (i.e., a

QoS metric) back into the SQL database which can be

queried by the CDE. Hence, the main overhead is com-

putational power on the computer that runs the CDE.

Depending on the ultimate usage of the wireless net-

work, the target QoS parameter may be throughput, delay,

jitter, or a combinatorial metric such as audio or video

quality. This surrogate modelling approach requires a tar-

get metric that changes continuously and can be modeled

by an analytical function. The conflicting nature of dif-

ferent QoS parameters influencing the audio/video quality

such as throughput and latency [27], requires using scalar

metrics such as the audio Mean Opinion Score (MOS) [28]

which is represented by a scalar value in between 1 and 5

(see Table 1). For a given audio stream, the MOS value is

easily calculated by feeding the ITU G107 E model [28]

with the values of throughput and jitter. Note that, since

MOS scores are bounded in between 1 to 5, a value of

s ¼ 0:5 is proposed in this paper.

For each experiment that is configured, the sender node

will stream an audio file to its receiver(s) over a short

period of time. At the same time, external interference is

generated by a collocated pair of IEEE802.11 compliant

nodes by means of iperf [29] data generator. We refer to

these two nodes as the interference generating group,

abbreviated as INT. These nodes generate a continuous

interference traffic on a different channel. The effect of this

external interference on the QoS performance of the

Fig. 2 Layout of the W-iLab.t living lab test environment (66 m � 20.5 m) with indication of the node numbers

Table 1 Mean opinion score

MOS Quality Impairment

1 Bad Very annoying

2 Poor Annoying

3 Fair Slightly annoying

4 Good Perceptible, not annoying

5 Excellent Imperceptible

Fig. 3 Layout of testbed for Scenario I
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wireless system is highly unpredictable in nature, so this

experiment can be seen as an analogy to real-life operation

of the system.

4.2 Scenario I: single-link optimization of MOS

The setup that was considered is a typical scenario of two

IEEE 802.11 standard compliant nodes, operating in

infrastructure mode with 802.11g standard and generating

traffic on down-link. We refer to these two nodes as the

System Under Test (SUT). In this scenario, the sender of

the SUT is located at node 48 and the location of the

receiver node of the SUT (knob 1) can be changed over a

fixed range of discrete positions, varying from node 56 to

60. In addition to this parameter, the transmit power (PTx)

of the sender node of the SUT (knob 2) can also be varied

in-between 1 and 20 dBm. The aim of the CDE is to tune

these 2 parameters such that the MOS over the

Table 2 Overview of parameter

list considered for Scenario I
Sl. No. Type Name Values Unit

1 Knob Position Rx node for SUT 56; 57; 58; 59; 60½ � -

2 Knob Tx Power of Sender SUT 1; 2; . . .; 20½ � dBm

3 Meter Interference RSSI at SUT sender - dBm

56
57

58
59

60

05101520
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Rx Node positionSUT Tx Power (dBm)
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Fig. 4 Scenario I: experiments performed during the learning phase

of the CDE. Each experiment is represented by a dot
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Fig. 5 Scenario I: actual MOS versus predicted MOS for ten

experiments
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Fig. 6 Scenario I: 2D surrogate model response for fixed Rx node =

58
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Fig. 7 Scenario I: 2D surrogate model for fixed Rx node = 58
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corresponding link is maximized over the period of audio

streaming between the SUT sender and receiver. Each time

step is set to 12 s which is the duration of a normal English

sentence audio file that is streamed over the link.

In addition to the SUT, the sender node and the receiver

node of the interference generating group (INT) are located

at nodes 40 and 41, respectively. As mentioned earlier,

these nodes generate a continuous amount of interference

on channel 12, which is nearby the channel 10 of the SUT.

Previous experimental results in [30] have shown that INT

is more likely to negatively impact the QoS on the SUT

link if they are operating on overlapping channels (due to

the malfunctioning of the Carrier Sense Multiple Access/

Collision Avoidance (CSMA/CA) mechanisms of the IEEE

802.11 terminals on overlapping channels). The layout of

the testbed for this scenario is visualized in Fig. 3.

In addition to the knobs, also some meters must be

derived to assess the current state of the environment. To

this end, RSSI (Received Signal Strength Indication)

information of INT at the SUT sender can be derived from

the REM. This meter provides additional information about

the interference pattern. Hence, the CDE should monitor

those values and optimize both the location of the receiver

as well as the Tx power of the sender of the SUT

accordingly, in such a way that the MOS score is maxi-

mized. Table 2 lists the parameters that are considered

during the cognitive decision making.

4.2.1 Model building

Since a real-time response of the CDE is desired, the

engine is first subjected to a learning phase where the

surrogate model is built. During this phase, an initial set of

experiments are performed to learn the resulting MOS

score over the SUT link as a function of 3 parameters listed

in Table 2. In order to create a dynamic environment, the

transmit power of the INT is switched from a low value

(e.g. 5 dBm) to a higher value (e.g. 20 dBm) after a certain

number of time steps. This creates an interference pattern

that is changing over time. As such, it exposes the algo-

rithm to different levels of interference. While the mea-

sured RSSI values are changing, multiple experiments are

performed by changing the knobs in such a way that the

parameter space is well covered, i.e. A balanced trade-off

is made between exploration and exploitation of the design

space. Inbetween the first and the last sample of the

training set, the ratio between both criteria decreases (in-

creases) linearly from 100–0 to 0–100 % respectively.

Alternative balancing schemes can also be used as descri-

bed in [31]. The 45 experiments that were performed

during model building are shown in Fig. 4.

−80 −75 −70 −65 −60 −55
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2

2.5

3

3.5

4

4.5

Meter reading: Interference RSSI level [dBm]

M
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S 
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CDE
#56, 10 dBm
#56, 15 dBm
#56, 20 dBm
#58, 10 dBm
#58, 15 dBm
#58, 20 dBm
#60, 10 dBm
#60, 15 dBm
#60, 20 dBm

Fig. 8 Scenario I: MOS score versus interference RSSI at SUT

sender for static and CDE assisted cases

Table 3 Performance evaluation of CDE for Scenario I

Experiment Avg. MOS Imp. (%)

CDE 4.16

Node:56, Tx Power=10 3.55 17.12

Node:56, Tx Power=15 3.77 10.14

Node:56, Tx Power=20 3.55 17.14

Node:58, Tx Power=10 2.74 51.84

Node:58, Tx Power=15 3.85 8.00

Node:58, Tx Power=20 3.64 14.41

Node:60, Tx Power=10 3.25 28.19

Node:60, Tx Power=15 3.74 11.34

Node:60, Tx Power=20 3.41 22.12

Imp. is an abbreviation for relative improvement
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e 
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CDE decisions: [# Node, Tx Power]

Fig. 9 Scenario I: CDE decisions as a function of the meter reading

(INT RSSI). Each decision is characterized with (Node number, Tx

Power)
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Using these selected samples, an interpolation model is

built by the CDE with the aim of making MOS score

predictions over the parameter space. The prediction of this

model can guide the switching between different wireless

configurations over time in order to maximize the MOS

score.

4.2.2 Model deployment

A hold-out set of ten experiments is used to validate the

accuracy of the surrogate model, as shown in Fig. 5. In the

ideal case, all data samples (marked by a red dot) are

located close to the linear solid line which indicates a

perfect agreement. Taking into account stochastic vari-

ability of the testbed, it is found that all experiments lie

with a narrow boundary (marked by 2 linear dashed lines),

that corresponds closely to the model accuracy threshold s
as chosen in (4).

Figure 6 shows the predicted MOS score of the surro-

gate model when the SUT receiver node is fixed at node 58,

while evaluating the model for any possible value of the

interference RSSI (meter) and Tx power of the SUT sender

(knob), see vertical slice in Fig. 7. As expected, it is seen

that a better MOS can be obtained for lower RSSI values

from the external interference and higher values of the Tx

power of SUT. Note that the model is only locally accurate

(i.e. it is trained within the operating ranges of the meters

that were encountered during model building to make the

algorithm scalable), however the interpolation routine aims

to generalize this to other interference levels.

In order to assess the performance of the CDE in this

scenario, the resulting MOS score over the SUT link is

compared to several static cases where the knobs are set to

a fixed configuration (no cognitive tuning). As an example,

ten different experiments were performed and the resulting

MOS scores are visualized in Fig. 8. This figure shows the

obtained MOS score as a function of the measured RSSI

value of INT at the SUT. Note that the RSSI values for

each case are slightly different because this parameter is

subject to stochastic variability. The RSSI is also not

constant, because the interference pattern of INT changes

over time. Recall that the sender of the INT switches its Tx

power from a low value (5 dBm) to a high value (20 dBm)

after 4 time steps in order to create a dynamically changing

environment. When compared to several other static con-

figurations, it is found that the CDE gives MOS score of

3.5 or higher (which is in-between the subjective rating of

‘‘fair’’ and ‘‘excellent’’). If the same experiment is repeated

without cognitive tuning, the QoS may degrade signifi-

cantly (i.e., MOS score of 1, which is ‘‘bad’’). A more

systematic quantification of the CDE performance is given

in Table 3, where the resulting MOS score is averaged over

the ten experiments. It is shown that the cognitive solution

can lead to an improvement in-between 8:00% and

51:84% when compared to the static configurations. As

expected, it is found that configurations with a low Tx

power of the SUT sender and a large distance between

sender and receiver of the SUT give more room for

improvement than other configurations. Also, it is found

that the cognitive solution (which adaptively tunes the

knobs) performs better than any of the static configurations.

Finally, the bracketed values in Fig. 9 comprise the

values of knob 1 and knob 2 respectively as chosen by the

CDE, which corresponds to the decisions taken during 10

deployment experiments. The MOS score is shown as a

function of the measured RSSI value of INT at sender SUT
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Fig. 10 Scenario I: QoS performance of cognitive versus static

configuration. Each time step is 12 s

Fig. 11 Layout of testbed for Scenario II
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for the different experiments. It is seen that, when the RSSI

values are relatively high for the INT, the CDE switches to

node 56, which is located close to the sender SUT. It is also

observed that the CDE does not necessarily pick the

highest possible transmit power for the SUT sender for

good performance.

The resulting MOS score of the cognitive solution is

also compared to the performance of a static configura-

tion over time in Fig. 10. For the static case, both Tx

power of the SUT and the location of the Rx node are

set to some middle values. In the case of low external

interference, both configurations give acceptable results,

however once the interference level is increased (after 4

time steps), the cognitive solution is able to enforce

more optimal choices that lead to an increase of the

MOS. Hence, for high interference levels, the CDE is

able to give significant improvements, compared to the

static case.

4.3 Scenario II: multiple-link optimization of MOS

This scenario describes a more complex case where 7

nodes are involved: 1 SUT sender (located at node 48) is

surrounded by 4 SUT receivers (located at the nodes 37,

39, 55 and 57 respectively). Similarly as in the previous

scenario, an INT sender-receiver pair (located at nodes

40–41) is again acting as an interferer on the SUT. A

visualization of the network topology is provided in

Fig. 11.

4.3.1 Building the surrogate model

The aim of this experiment is to maximize the worst-case

MOS score over all 4 SUT links simultaneously. The time

step is again set to 12 s. Three parameters can be tuned by

the CDE:

(1) Tx power of the SUT sender

(2) Tx rate of the SUT sender

(3) Frequency channel of the SUT

To this end, the following 2 meters must be monitored:

(1) RSSI information at SUT sender

(2) Channel information of the INT

An overview of the parameters is given in Table 4.

Table 4 Overview of parameter

list considered for Scenario II
Sl. No. Type Name Values Unit

1 Knob Tx Power of Sender SUT 1; 2; . . .; 20½ � dBm

2 Knob Tx Rate of Sender SUT 1; 2; . . .; 11½ � Mbps

3 Knob Frequency channel of SUT 1; 2; . . .; 12½ � -

4 Meter Interference RSSI at SUT sender - dBm

5 Meter Frequency channel of INT - -

Actual MOS
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Fig. 12 Scenario II: actual MOS versus predicted MOS for 15

experiments
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In order to create a dynamic environment, the channel of

the INT is switched between different frequencies, leading

to more abrupt (non-smooth) changes in the MOS score.

Similarly, for the model building phase of the algorithm

87 experiments were performed according to the explo-

ration/exploitation trade-off in order to compute a surro-

gate model of the MOS score.

4.3.2 Model deployment

Using this model, the CDE can optimize the worst-case

MOS score over all the links by enforcing certain actions.

Figure 12 compares the predicted MOS score of the sur-

rogate model to the actual MOS score obtained after exe-

cuting some validation experiments and it is found that a

very good agreement is again obtained.

Figure 13 visualizes the worst-case MOS score as a

function of measured RSSI values at SUT in a dynamic

environment where the interferer switches from channel

2 to 7 and then to 12 after a certain number of time

steps. In the static configurations, the channel, Tx power

and Tx rate of the SUT sender are set to fixed values.

The CDE on the other hand, optimizes the parameters in

a cognitive way. The worst-case MOS scores when

averaged over 15 experiments are listed in Table 5. It is

clear that the CDE yields a significant QoS performance

gain when compared to other static solutions.

The resulting MOS score of the cognitive solution

(CDE) is also compared to the performance of the static

configurations in Fig. 14a. For the static case, both Tx

power of the SUT and the location of the Rx node are

set to the values listed in Table 5. The channel of the

INT is changed as shown in Fig. 14b. Hence, in a

dynamic environment where the INT pattern changes,

neither fixed configuration (Case 1 and Case 2 in the

figure) turns out to be optimal in the general case. The

CDE algorithm detects that the INT changes to a dif-

ferent channel, and is able to adjust the knobs of the

SUT in such a way that a good MOS score ð[ 3:9Þ is

preserved.

5 Conclusion

A novel approach for decision making is presented in the

context of cognitive ISM band WLANs where all users

have equal regulatory status in terms of spectrum uti-

lization. The method incorporates surrogate models for

predicting the performance of the network by monitoring

environmental parameters and transmission parameters. It

improves the models by following the accuracy of its

predictions in real time. The generic design of the

algorithm is beneficial for different scenarios with dif-

ferent set of parameters. As proof of concept, two use

cases were experimentally investigated to verify the

efficiency of this method in optimizing the performance

of wireless networks. In the first use case, by changing

the location of the receiver node, the average audio

Mean Opinion Score (MOS) of an IEEE 802.11g com-

pliant link was optimized by a factor of 30 % compared

to the same fixed configuration. In the second use case,

by changing the transmission power, transmission rate

and frequency channel of the sender in an audio con-

ferencing scenario (with multicast traffic), the worst case

MOS was improved by a factor of 50 % compared to the

static configuration.

Table 5 Performance

evaluation of CDE for Scenario

II

Experiment Avg. worst-case MOS Improvement (%)

with CDE 4.28

No CDE, Channel=11, Tx Power=20, Tx Rate=11M 3.69 15.99

No CDE, Channel=4, Tx Power=20, Tx Rate=11M 3.85 11.17
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Fig. 14 Scenario II: a QoS performance of cognitive versus static

configuration, b channel of INT. each time step is 12 s

Wireless Netw

123



In order to handle large networks with many parameters,

the CDE can be extended with additional modules that

contain expert rules or domain knowledge. This way, one

can relax the assumption of a self-learning, black-box

algorithm that no prior knowledge about the network

behaviour is available. It is expected that this will signifi-

cantly improve scalability of the approach and reduce the

overall training times. Large scale implementation of the

algorithm in different environments such as home, office,

industry, etc. would therefore be the topic of future

research. Finding the most appropriate set of meters and

knobs in different scenarios on the one hand, and, coupling

the model-based predictions with heuristic decision making

methods on the other hand, would lead to useful endeavors

aiming at improving the current algorithm.
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