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Abstract In cognitive wireless networks, active moni-

toring of the wireless environment is often performed

through advanced spectrum sensing and network sniffing.

This leads to a set of spatially distributed measurements

which are collected from different sensing devices.

Nowadays, several interpolation methods (e.g., Kriging)

are available and can be used to combine these measure-

ments into a single globally accurate radio environment

map that covers a certain geographical area. However, the

calibration of multi-fidelity measurements from heteroge-

neous sensing devices, and the integration into a map is a

challenging problem. In this paper, the auto-regressive co-

Kriging model is proposed as a novel solution. The algo-

rithm is applied to model measurements which are col-

lected in a heterogeneous wireless testbed environment,

and the effectiveness of the new methodology is validated.

Keywords Radio environment maps � Wireless

experimentation � Kriging � Multi-fidelity modeling

1 Introduction

A reliable connectivity for wireless services that have

stringent QoS requirements is often compromised by the

saturation of the wireless radio spectrum. Due to the

uncoordinated use of the unlicensed frequency bands (2.4

and 5 GHz) by various wireless technologies and devices,

the adverse effects of interference are becoming increas-

ingly important and can no longer be neglected. Over the

past years, cognitive radio techniques have been developed

to ensure efficient interoperability of heterogeneous sys-

tems through advanced monitoring of the wireless envi-

ronment, and the optimization of network configurations

through cognitive decision making [1]. To this end, radio

environment maps (REMs) contain a lot of information as

they represent an integrated database that provides real-

time information concerning, e.g., spectrum availability,

regulations or policies, and the degree of channel utiliza-

tion [2]. In terms of spectrum utilization, REMs have been

proposed to measure power spectral density (PSD) in order

to determine the degree of spectrum utilization in a certain

geographical area. These models are typically calculated

from a set of distributed measurements and spatial inter-

polation techniques are applied to build an approximation

model that estimates the corresponding values at arbitrary

spatial coordinates. An overview of various REM con-

struction methods along with REM quality metrics are

presented in [3]. In [4], various new spectrum sensing

technologies and algorithms are actively developed to

construct REMs. Several algorithms to calculate a REM

have been studied previously, such as splines, Kriging,

probabilistic models, Shepard’s interpolation and Inverse

Distance Weighting [5]. Kriging and thin-plate spline

interpolation methods are used to generate interference

cartographs suitable for cognitive radio networks in [6].

Kriging is reported to achieve a good performance in terms

of overall prediction accuracy and generality in [7]. In

addition to PSD maps, other authors present so-called

channel gain maps, that capture information about the

propagation medium [8]. In [9], the use of medium uti-

lization is proposed as a metric to be included in the REMs

dedicated for wireless LANs. In [10], REMs have been
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used for intelligently guiding spectrum access for deploy-

ment of a prototype of a Long Term Evolution (LTE)

system that opportunistically exploits the spectral white

spaces in the upper Ultra High Frequency (UHF) TV

bands. In [11], a new technique, termed as self-tuning

method, which takes into account the characteristics of the

operating environment and performs estimation of the

transmitter parameters, as well the parameters of the

propagation model while constructing the radio frequency

layer of REM, is proposed.

This paper will focus on building REMs for measure-

ments that originate from heterogeneous spectrum sensing

devices on a wireless testbed. It is noted that each type of

device may have its own processing and hardware capa-

bilities in terms of detection mechanisms, sweeping time

and data accuracy [12]. Also in [13], it is mentioned that

the calibration of such measurements and integration into a

REM involves a lot of challenges. The different sensing

devices that will be considered in this work are subdivided

into two categories. The USRP and IMEC sensing engines

are considered to be high-fidelity (HF) devices which come

at a higher production cost, but offer superior energy

detection capabilities leading to very accurate measure-

ments. The low-fidelity (LF) sensing devices such as Wi-Fi

are considered to be low-cost and provide less accurate

measurements because their sensing solutions are not as

advanced. In order to combine these different types of data

into a single globally accurate REM, the use of the

autoregressive co-Kriging model [14] is presented as a

novel approach. First, the densely sampled LF data is used

to determine a trend function which is then corrected by the

sparsely sampled HF data. An independent data set, based

on additional measurements, is then used to validate the

accuracy of the model and to assess how well its predic-

tions cover the overall environment.

The paper is structured as follows: in Sect. 2, a spatial

modeling algorithm is presented which explains how a

single model can be calculated from measurement data

with different levels of fidelity. In Sect. 3, a brief

description of the w-iLab.t testbed is given—a large scale

wireless testbed where all the measurements are performed.

In Sect. 4, more details are provided about the different

spectrum sensing devices installed in the testbed. In

Sect. 5, a practical application example of the novel tech-

nique is considered and the approach is validated experi-

mentally. Finally, conclusions are provided in Sect. 6.

2 Spatial modeling algorithms

In order to build spatially-interpolated REMs, several

mathematical algorithms can be considered [5] to model

the measurement data. This paper will focus on a Kriging-

based approach, which it is reported to achieve good per-

formance in terms of prediction accuracy and generality

[7]. First, a brief recap of the Kriging algorithm is pre-

sented in Sect. 2.1. Then, the use of the co-Kriging algo-

rithm will be advocated in Sect. 2.2 as a novel approach to

build REMs by combining data from sensing devices

having different levels of fidelity.

2.1 Kriging interpolation

A well-known technique in surrogate modeling is Kriging

[15, 16]. Kriging surrogate models are also known as

Gaussian Processes (GP) [17] or Gaussian Random Fields

[18]. Originally proposed by Krige [19], Kriging was

popularized for the Design and Analysis of Computer

Experiments (DACE) by Sacks et al. [20], where it has

proven to be very useful for tasks such as optimization [21,

22], design space exploration, visualization, prototyping,

and sensitivity analysis [23, 24]. For a full survey of

Kriging the reader is referred to [16] and [17]. In this

section a summary is given of the most important aspects

of Kriging, and a brief explanation is given on how to build

a REM.

Let X ¼ ðx1; x2; . . .; xnÞ be a base set of n spatial coor-

dinates and feðXÞ the associated expensive measurements

(HF). Kriging first fits a constant regression function on the

data and, subsequently, constructs a GP through the

residuals. The idea is that the regression function captures

the largest variance in the data, while the GP takes care of

the finer details and the final interpolation. This is reflected

in the Kriging interpolant which is derived as,

f̂ ðxÞ ¼ aþ rðxÞ �W�1 � ðfeðXÞ � 1aÞ; ð1Þ

where 1 is a column vector of ones. The coefficients of the

regression function, i.e., the vector a, are determined by

generalized least squares,

a ¼ ðX0W�1XÞ�1
XW�1feðXÞ: ð2Þ

rðxÞ ¼ wðx; x1Þ. . .wðx; xnÞð Þ is an 1 � n vector of correla-

tions between the point x and the base set X, and W is a

n � n correlation matrix given by,

W ¼
wðx1; x1Þ . . . wðx1; xnÞ

..

. . .
. ..

.

wðxn; x1Þ . . . wðxn; xnÞ

0
B@

1
CA ð3Þ

Moreover, Kriging also predicts the approximation error

(prediction variance) at each location in the environment,

also where no measurements have been performed. The

approximation error is zero in the data points themselves,

as Kriging interpolates all data.

The regression function actually operates as the mean of

the GP: predictions too far from existing measurement
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points (e.g., outside the sampled region) will revert to the

mean (=regression function). As the behavior of the

response is usually unknown, a popular choice that works

well is the constant regression function as explained further

on. However, in this case Kriging is purely an interpolation

technique (in contrast to extrapolation). By using prior

knowledge or other techniques (e.g., blind Kriging [25])

one may identify basis functions (linear, quadratic, etc.) to

use in the regression function, enabling Kriging to

extrapolate outside the sampled environment. This is

especially useful for problems with missing data, i.e., in

cases where there exist large gaps in the environment

because no sensing devices are installed or available.

The choice of correlation function is crucial to create an

accurate Kriging surrogate model. The popular (squared)

exponential correlation functions are defined by

wðx; x0Þ ¼ expð�
Pd

i¼1 hijxi � x0ij
pÞ. These correlation

functions are called stationary because the correlation

function only depends on the distance between the two

points x and x0. The smaller the distance between two

points, the higher the correlation and, hence, the more the

prediction of one point is influenced by the other. Simi-

larly, if the distance increases the correlation drops to zero.

The rate and the manner at which this happens are

governed by several parameters. In essence, the parameter

p determines the ‘smoothness’ of the prediction, see

Fig. 1a. A value of p ¼ 2 leads to a smooth prediction, but

also has strict smoothness requirements on the response

feðxÞ. With a smaller value of p the correlation decreases

much faster as the two points move farther from each other,

which is suitable for more sharp (discontinuous) responses.

Often, the parameter p is set to two, also known as the

Gaussian correlation function, which is suitable for many

problems. However, the Matérn class of correlation func-

tions is a more realistic choice for real-life problems [26]

and is considered in this work over the commonly used

Gaussian correlation function. The Matérn class of corre-

lations functions is observed to model rough surfaces more

accurately than the Gaussian correlation function on vari-

ous occasions. Two instances of the Matérn correlation

functions are defined by,

wðx; x0Þm¼3
2
¼ 1 þ

ffiffiffi
3

p
l

� �
exp �

ffiffiffi
3

p
l

� �
; ð4Þ

wðx; x0Þm¼5
2
¼ 1 þ

ffiffiffi
5

p
l þ 5l2

3

� �
exp �

ffiffiffi
5

p
l

� �
; ð5Þ

with l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPd

i¼1 hiðxi � x0iÞ
2

q
. The parameter m of the

Matérn correlation functions has a similar role as the p

parameter. Usually both parameters are fixed and in this

work m is set to 3
2
.
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Fig. 1 Examples of one-dimensional correlation functions: a the

exponential correlation function with varying parameter p for

h ¼ 0:1, b the exponential correlation function with varying param-

eter h for p ¼ 1 and c the Matérn correlation function with varying

parameter h for m ¼ 3
2
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The second set of parameters, ðh1. . .hdÞ, describes the

influence sphere of a point on nearby points for each

dimension, see Fig. 1b, c. This is useful as it describes the

linearity of the response and, hence, can be used to identify

relevant variables. The parameters ðh1. . .hdÞ are identified

using Maximum Likelihood Estimation (MLE). In partic-

ular, we minimize the negative concentrated log-likelihood,

� lnðLÞ ffi � n

2
lnðr̂2Þ � 1

2
lnðjWjÞ; ð6Þ

where r̂2 ¼ ðfeðXÞ � 1aÞ0W�1ðfeðXÞ � 1aÞ=n. Note that the

application of Kriging is primarily limited by the size of

the dataset. The number of samples has a direct impact on

the correlation matrix which grows quickly as the number

of samples increases. As the inverse of the correlation

matrix needs to be computed many times during the MLE,

Kriging is typically used for datasets with\1000 samples.

Because the number of sensing devices in a testbed is

usually limited (\100 samples), the computation time is

merely a matter of seconds which makes it a suitable aid

for visualization and real-time decision making.

2.2 Co-Kriging interpolation

The popularity of Kriging has generated a large body of

research, including several extensions to Kriging to handle

different problem settings, e.g., by adding gradient infor-

mation in the prediction [27], or by approximating stochastic

simulations [28], etc. Co-Kriging is a natural multi-response

extension to Kriging and allows to incorporate both expen-

sive (i.e., high-fidelity, HF) and cheap (i.e., low-fidelity, LF)

measurements from heterogeneous sensing devices in order

to build accurate REMs [29]. In this paper the autoregressive

co-Kriging model of Kennedy et al. [14] is adopted.

Creating a co-Kriging model can be interpreted as con-

structing two Kriging models in sequence. First a Kriging

model f̂c of the cheap data ðXc; fcðXcÞÞ is constructed.

Subsequently, the second Kriging model f̂r is constructed on

the residuals of the expensive and cheap data ðXe; frÞ, where

fr ¼ feðXeÞ � q � fcðXeÞ. The parameter q is included in the

MLE of the second Kriging model. If the response values

fcðXeÞ are not available, they can be approximated by the

first Kriging model f̂c, namely, fcðXeÞ � f̂cðXeÞ.
Note that the configuration (choice of correlation func-

tion, regression function, etc.) of both Kriging models can

be adjusted separately for the cheap data and the residuals,

respectively.

The final co-Kriging model is built upon the two Kriging

models. Namely, the co-Kriging interpolant is defined

similarly as (1),

f̂ ðxÞ ¼ _Maþ _rðxÞ � _W�1 � ðfr � _FaÞ; ð7Þ

where the block matrices _M; _F; _rðxÞ and _W can be written

as a function of the two underlying Kriging models f̂c and

f̂r:

_rðxÞ ¼ q � r̂2
c � rcðxÞ; q2 � r̂2

c � rcðx;XeÞ þ r̂2
r � rrðxÞ

� �
;

ð8Þ

_W ¼ r̂2
c �Wc q � r̂2

c �WcðXc;XeÞ
0 q2 � r̂2

c �WcðXe;XeÞ þ r̂2
r �Wr

	 

; ð9Þ

_F ¼ 1 0
q � 1 1

	 

; _M ¼ q 1½ �; ð10Þ

where ðr̂2
c ;WcÞ and ðr̂2

r ;WrÞ are matrices obtained from the

Kriging models f̂c and f̂r, respectively (see Sect. 2.1). In

particular, r̂2
c and r̂2

r are process variances, while Wcð�; �Þ
and Wrð�; �Þ denote correlation matrices of two datasets

with the optimized h1. . .hd parameters and correlation

function of the Kriging models f̂c and f̂r, respectively. The

block matrix is the crucial part of co-Kriging, as it is here
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Fig. 2 Kriging and co-Kriging

applied to a one-dimensional

mathematical example

f(x) having a normalized input

coordinate x. Co-Kriging

interpolates the expensive

model response and is further

corrected by the cheap model

response
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that the correlation between the cheap and expensive model

data is taken into account.

Similarly to Sect. 2.1, we choose the Matérn correlation

function with m ¼ 3
2

for the underlying Kriging models, f̂c

and f̂r. For illustration purposes, Kriging and co-Kriging

are applied to a mathematical example, see Fig. 2. Using

the same expensive data, co-Kriging is able to capture the

behavior of the environment better than Kriging, which is

attributed to the use of the additional cheap sensing data.

3 Wireless testbed facility (w-iLab.t)

The w-iLab.t testbed is a generic and heterogeneous

wireless testbed that is used for experimental testing and

validation. It consists of two sub-testbeds: the w-iLab.t

office and w-iLab.t Zwijnaarde. The w-iLab.t office is

deployed in a real office environment whereas the testbed

Zwijnaarde is located in a utility room. There is little

external interference at the Zwijnaarde testbed as no reg-

ular human activity is present and most of its walls and

ceiling are covered with metal. Since Zwijnaarde testbed

was deployed more recently, the devices in this testbed are

more advanced in terms of processing power, memory and

storage [30, 31].

In this work, all experiments are performed at the

Zwijnaarde testbed. There are 60 Zotac nodes installed,

each having two Wi-Fi interfaces, one sensor node, one

Bluetooth dongle and a wired control interface. Further-

more, the testbed is equipped with several types of spec-

trum sensing devices. These include 6 USRP N210

Software Defined Radios [32] and 7 IMEC Sensing Engi-

nes [33]. The testbed is also equipped with mobile nodes

which are suited for mobility experiments. The OMF

(cOntrol and Management Framework) was adopted, as it

allows experimenters to describe their experiments sys-

tematically. It provides easy data logging services and the

ability to configure multiple devices. The topology of the

testbed is presented in Fig. 3.

4 Heterogeneous sensing devices

In this section, the capabilities of three different sensing

devices is briefly presented. As explained below, the Wi-Fi

nodes are considered to be LF nodes whereas USRP and

IMEC Sensing Engines are seen as HF information

sources.

4.1 Wi-Fi nodes (LF nodes)

The monitor mode of the IEEE 802.11 standard [34]

enables the wireless terminal to trace the spectrum activity

on the channel it is configured to. More precisely, the

receiver of the wireless terminal sniffs all IEEE 802.11

packets that are detectable, regardless of the packet source

and destination address. In this way, the terminal can

gather information on the present Wi-Fi traffic by means of

packet sniffing applications such as tcpdump [35] and

libtrace [36]. The radio tap header of the Wi-Fi packets

contains link layer information of the received packets,

such as Received Signal Strength Indicator (RSSI), Link

Quality Indicator (LQI), packet length, receiving antenna,

transmission rate, and other parameters.

Thanks to the increasing utilization of Wi-Fi technology

in smart devices, the cost of Wi-Fi interfaces has been

declining. This makes Wi-Fi sniffing a promising solution

for spectrum monitoring in cognitive radio networks.

However, this type of spectrum monitoring is limited to

homogeneous traffic, i.e., technologies other than Wi-Fi are

excluded from the detection results. Moreover, if the pro-

cessing capacity of the sniffer terminal is not commensu-

rate with the rate of sniffed traffic, it is likely that the

terminal drops some packets which will introduce uncer-

tainties to the fidelity of the measurements.

4.2 USRP sensing engine (HF nodes)

The Universal Software Radio Peripheral (USRP) [32] is a

Software Defined Radio (SDR) platform maintained by

National Instruments. It consists of two parts—a fixed

motherboard and a removable daughterboard. The moth-

erboard contains an Analog-to-digital converter (ADC) a

digital-to-analog converter (DAC), a field-programmable

gate array (FPGA) for digital down sampling and an

interface connected to a host computer. The daughterboard

provides the RF front-end functionality. There are many

third-party software platforms, such as GNU Radio [37]

Fig. 3 Topology of the w-iLab.t Zwijnaarde testbed
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and Iris SDR platform [38], which can communicate with

the USRP. Thus, spectrum sensing applications can be

implemented in many ways. In our case, the sensing

algorithm is FFT-based energy detection, implemented

directly above the USRP hardware driver (UHD) [39]. The

application uses multi-threading to increase the processing

speed on the host machine. On the hexa-core server in

w-iLab.t, seamless FFT operation of 25 Msps can be

achieved in real time [40], which ensures that no transient

signal is missed from the detection.

4.3 IMEC sensing engine (HF nodes)

The IMEC Sensing Engine is an integrated sensing device

developed by IMEC, an interuniversity micro-electronics

center [33]. The design of IMEC Sensing Engine targets on

low-power and hand-held devices. Hence it is powered and

configured over a single USB connection. Similar to USRP,

it has configurable gain settings and a separate PCB for the

RF front-end functionality. The imec sensing engine has a

very wide RF frequency range (from 100 MHz up to

6 GHz) and a programmable instantaneous bandwidth

between 1 MHz and 40 MHz. Additionally, it uses a ded-

icated IC for signal processing instead of using the host

computer. There are several pre-defined modes in the IC,

including sensing based on FFT and sensing based on fast

sweeping over a set of consecutive RF frequencies.

5 Application of co-Kriging for building REMs

In this example, it is shown how a comprehensive REM

can be built from received signal strength indicator (RSSI)

values, which are measured by a heterogeneous set of

sensing devices. The setup that was considered is a typical

scenario of two IEEE 802.11 standard compliant nodes,

operating in infrastructure mode with 802.11g standard and

generating active traffic on Uplink. We refer to these two

nodes as the System Under Test (SUT). The sender node 13

will directly transmit iPerf data to the receiver node 15 on

IEEE 802.11g channel 6 over a short time period of 10 s.

During the course of traffic generation, all sensing devices

collect their measurements into a centralized database.

Fig. 4 Topology of the

w-iLab.t testbed and sensing

devices (training data)
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These measurements originate from Wi-Fi nodes, hereby

acting as LF information sources, operating on monitor

mode and on channel 6. These Wi-Fi agents store the RSSI

field of all packets they sniff. Aside form this, the other

sensing devices (USRP nodes and IMEC sensing engines)

collect HF measurement data at a sparser set of locations.

Note that these devices store the power spectral density of

all IEEE 802.11 channels into the database. The topologi-

cal setup of the sensing devices is shown in Fig. 4. Once all

measurements are collected, the maximum value of stored

values is queried at their corresponding node locations on

channel 6. By performing these testbed experiments, a total

amount of 8 HF and 14 LF data samples have been col-

lected to build a spatially-interpolated REM using co-

Kriging with the Matérn correlation function.

All the HF data samples are shown in Fig. 5 as solid

black dots (�), whereas the LF data samples are marked as

black asterisks (	). The surface inbetween these data

samples represents the RSSI values which are predicted by

the co-Kriging model at arbitrary coordinates in the plane.

As can be seen, the model exactly interpolates the HF data

whereas the trend of the function is determined by the LF

data. This result is also confirmed by Fig. 6, which shows a

scatter plot of the predicted and the observed RSSI values.

It is seen that predictions at the coordinates of the HF

sensing devices matches exactly the HF measurement data,

whereas the LF data samples are biased within a range of

approximately 
10 dB. This deviation matches with the

stochastic variability (noise level) of the testbed

environment.

In order to validate the accuracy of the model predic-

tions on unseen data, an independent validation set of LF

data was measured at different coordinates as shown in

Fig. 7. This validation set consists of 19 additional LF

measurements, based on another run of experiments which

was performed at a later time. As shown in Fig. 6, the

predicted RSSI values and the observed measurements in

the validation set (þ) show a good agreement. This shows

that the co-Kriging model is quite accurate as the absolute

fitting error lies within the range of 
10 dB for most of the

validation data points. A more extensive summary of these

results is presented in Table 1, where the Normalized Root

Mean Square Error (NRMSE), Spearman’s Rank-Order

Correlation Coefficient (SROCC) and Pearson Linear

Correlation Coefficient (PLCC) are compared for both the

training and the validation set. The latter metrics quantify

the statistical dependence between the observed and the

predicted RSSI values, more specifically the correlation

between both variables and their rank. A strong correlation

is observed, as most coefficients are substantially higher

than 0.5. Of course, a perfect correlation is observed for the

HF data as it is interpolated exactly. Moreover, in order to

show the feasibility of the variable fidelity data modeling

with co-Kriging over the single fidelity data modeling with

Kriging, both the HF and the LF data are independently

modeled by Kriging. Table 2 shows a summary of accu-

racy metrics of the Kriging models built with either LF data

or HF data only. It can be observed that more than 30 % of

accuracy reduction is exhibited in the Kriging models built

with either LF data or HF data only as compared to the co-

Fig. 7 Topology of the

w-iLab.t testbed and sensing

devices (validation data)

Table 1 A summary of accuracy metrics of the co-Kriging model

Data set NRMSE SROCC PLCC

HF training 0.0000 1.000 1.000

LF training 0.1996 0.507 0.624

LF validation 0.2454 0.677 0.688

Table 2 A summary of accuracy metrics of the Kriging model

Data set NRMSE SROCC PLCC

Training Validation

HF only LF validation 0.4427 0.3502 0.3015

HF only HF 0.0000 1.0 1.0

LF only HF 0.3020 0.7306 0.6571

HF only (Half) HF 0.3065 0.6826 0.6662

LF only (Half) HF 0.3897 0.1677 0.3620

The last two rows of the results are from the Kriging models which

are built with only half (4 HF or 7 LF) of the original training data
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Kriging models built with both the LF and the HF data (see

Tables 1, 2). This clearly shows the advantage of why one

can go for co-Kriging over Kriging when a variable fidelity

data is available.

As the choice of the correlation function is important for

successful modeling in co-Kriging, three different corre-

lation functions which are more widely used in the context

of surrogate modeling are compared. They are the Gaussian

correlation function, Matérn 3
2

correlation function and

Matérn 5
2

correlation function. All the three correlation

functions are observed to be equally capable of providing

accurate REM models (see Table 3 which shows a sum-

mary of accuracy metrics of the co-Kriging models built

and validated with different correlation functions on dif-

ferent data sets). But, with a close observation, one can see

that the Matérn 3
2

correlation function results in a slightly

more accurate REM model than the other correlation

functions employed. This is essentially due to the fact that

the Gaussian correlation function is infinitely differentiable

and is thus very smooth [26]. This smoothness assumption

is considered to be unrealistic in real-life data and the

Matérn class of correlation functions effectively models

such not-so-smooth real-life data [26]. Readers are referred

to [17] and [26] for more information on various correla-

tion functions which are commonly used in Kriging-based

surrogate modeling.

Finally, a heat map of the predicted RSSI values is

visualized in Fig. 8 using the proper aspect ratio, which

facilitates a direct comparison with the topology layout of

the testbed in Fig. 4. As expected, it can be seen that the

RSSI values are elevated in regions where the traffic gen-

erator link is situated.

6 Conclusions

This paper presents co-Kriging as a novel methodology to

build REMs, based on measurements from heterogeneous

sensing devices. It generalizes the existing work on Krig-

ing, in a sense that the different fidelity levels of data can

Table 3 Performance of

different correlation functions in

co-Kriging model

Correlation function Data set NRMSE SROCC PLCC

Training Validation

Gaussian LF and HF (Full) LF validation 0.2629 0.615 0.674

Matérn 3/2 LF and HF (Full) LF validation 0.2454 0.677 0.688

Matérn 5/2 LF and HF (Full) LF validation 0.2578 0.645 0.668

Gaussian LF and HF (Full) LF 0.2018 0.476 0.608

Matérn 3/2 LF and HF (Full) LF 0.1920 0.509 0.639

Matérn 5/2 LF and HF (Full) LF 0.1968 0.471 0.619

Gaussian LF and HF (Full) HF 0.0 1.0 1.0

Matérn 3/2 LF and HF (Full) HF 0.0 1.0 1.0

Matérn 5/2 LF and HF (Full) HF 0.0 1.0 1.0

Gaussian LF and HF (Half) LF and HF (Half) 0.3197 0.461 0.374

Matérn 3/2 LF and HF (Half) LF and HF (Half) 0.3237 0.461 0.361

Matérn 5/2 LF and HF (Half) LF and HF (Half) 0.3234 0.461 0.361

The last three rows of the results are from the co-Kriging models which are built with only one-half (both

LF and HF data are equally divided) of the original training data. The remaining half of the original training

data is used as a validation data set
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Fig. 8 Radio environment map

of the predicted RSSI using co-

Kriging
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be taken into account. As demonstrated in the example, HF

measurements are expensive to obtain so this data is

modeled with a very high accuracy. The LF measurements

are easier to collect and can be used to guide the trend of

the approximation model at inbetween spatial coordinates.

The resulting model can be used to build a heat map which

visualizes spectrum information and can serve as a moni-

toring tool that facilitates cognitive decision making.
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