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Abstract— Wireless systems often need to optimize multiple
conflicting objectives (low delay, high reliability, and low cost),
which are difficult to fulfill simultaneously. In such cases,
the wireless system exhibits multiple optimal operation points,
referred to as the optimal Pareto front (OPF). However, due
to the large number of parameter settings to be evaluated and
the time-consuming nature of performing wireless experiments,
it is typically not possible to identify the OPF by exhaustively
evaluating all possible settings. Instead, for many use cases,
an approximation is good enough. To this end, this paper applies
a multi-objective surrogate-based optimization (MOSBO) toolbox
to efficiently optimize wireless systems and approximate the
OPF using a limited number of iterations. Moreover, a real
Wi-Fi conferencing scenario is optimized that has two conflicting
objectives (exposure and audio quality) and four configurable
parameters (Tx-Power, Tx-Rate, Codec Bit-Rate, and Codec
Frame-Length). The benefits of using the MOSBO approach
for such a network problem is demonstrated by approximating
the OPF using 94 iterations instead of requiring the exploration
of 6528 different parameter combinations, while still dominating
96.58% of the complete design space.

Index Terms— Multi-objective Pareto optimization, MOSBO,
exposure, audio quality, wireless systems and experimentation.

I. INTRODUCTION

THE introduction of wireless systems, replacing the legacy
wired systems, created a wide range of opportunities.

Nowadays, industrial environments are equipped with wireless
sensors in places where it is difficult to put wired connec-
tions for temperature and pressure readings. It is also very
cheap to deploy cellular networks these days rather than
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installing expensive copper wirings at customers’ premises.
Such application areas are pushing the need for wireless
systems which otherwise are difficult to be realized by wired
systems or impractical in some areas.

On the other hand, the opportunities that were envisioned
in wireless systems are challenged by the need to optimize
multiple conflicting objectives. Wireless surveillance systems,
for example, target the highest video quality whilst utilizing a
minimal bandwidth. Wireless conferencing systems also strive
for realizing the best audio quality but simultaneously aim to
limit their wireless exposure. Another example is Automated
Guided Vehicles (AGVs) working in a large factory hallway.
While robustness is typically a first priority, communication
between AGVs needs to be secure which also demands higher
network utilization during frequent roaming between access
points. Such wireless systems, showing conflicting objectives,
exhibit multiple non-dominated operating points (i.e. parame-
ter settings) which in literature is referred to as the Optimum
Pareto Front (OPF) [1], [2]. The OPF is a set of perfor-
mance objectives which cannot be further improved by any
other parameter combinations without affecting at least one
objective. For designers of wireless systems, it is typically not
possible to identify the OPF because it requires an exhaustive
search of the parameter space which tends to be time intensive
and sometimes impossible. Instead, an approximation is good
enough. To this end, an Approximate Pareto Front (APF) [2]
is calculated using a number of multi-objective optimizers
such as the Non-dominated Sorting Genetic Algorithm II
(NSGA-II [3]), the S-Metric Selection Evolutionary MultiOb-
jective Algorithm (SMS-EMOA [4]) and the Strength Pareto
Evolutionary Algorithm 2 (SPEA2 [5]).

Even though all of these are targeted at multi-objective
optimization, they are typically not designed to minimize the
number of iterations. In fact, most evolutionary based multi-
objective variants (i.e. NSGA-II, SPEA2, SMS-EMOA, ...)
inherently require a large number of iterations to identify
the APF. On the other hand, evaluating real-life wireless sys-
tems is time-intensive since each experiment requires resource
deployment, configuration, execution and evaluation of the
wireless experiment. For example, when using the Orbit
Management Framework (OMF) for experimentation control,
an experiment having N wireless nodes adds an average
delay of 5.17*N ms on a single message orchestration [6].
As such, most designers of wireless systems aim to approxi-
mate the OPF using a limited number of experiments, specially
when relying on real-life deployments rather than simula-
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tions. As a solution, this paper considers a Multi Objective
Surrogate-Based Optimization (MOSBO) approach [7].
MOSBO makes use of Kriging models and Hypervolume
based Probability of Improvement (HV-PoI) to economize
experiment runs and approximate the OPF using a limited
number of experiments.

The paper introduces the following novel contributions.
• An architecture for integrating a MOSBO optimizer

in realistic conditions for approximating the OPF of
complex wireless systems using a limited number of
experiments

• The introduction of advanced optimization objectives,
including (i) an advanced calculation of end-to-end audio
quality Mean Opinion Score (MOS) and (ii) an exposure
Specific Absorption Rate (SAR) metric for Wi-Fi traces.

• An analysis of the influence of different MOSBO design
criteria, such as the stopping criteria and initial sample
size, on the overall performance of the system.

• An experimental validation of the overall multi-objective
optimization through a large-scale Wi-Fi conferencing
system using an experimental testbed facility.

The remainder of this paper is structured as follows.
Section II presents a literature survey of multi-objective opti-
mization solutions in wireless systems. Next, the MOSBO
optimizer is presented in Section III. Section IV introduces a
Wi-Fi conferencing scenario which is used to validate the suit-
ability of the MOSBO optimizer. The results from the Wi-Fi
conferencing experiments are discussed in Section V. Finally,
conclusion and future work are presented in Section VI.

II. RELATED WORK

During the validation section, a Wi-Fi conferencing scenario
will be considered that aims to optimize two conflicting
objectives: improving audio quality (e.g. using MOS score)
while reducing the transmission exposure (expressed as SAR).
This section will discuss aspects related to the conflicting
objectives that will be investigated as well as the state of the
art in multi-objective optimization of wireless networks.

A. Electromagnetic Exposure

Due to the increased use of wireless technologies,
an increasing amount of attention is given to the impact of
electromagnetic radiation on the human body. In exposure
assessment, one distinguishes between (i) compliance testing
and (ii) realistic exposure assessment. The former evaluates
if worst-case exposure situations comply with exposure limits
and is either uplink (transmission from a wireless end device
to a base station) or downlink (transmission from a base station
down to a wireless end device) focused. The exposure metrics
used in compliance testing are incident electric and magnetic
field, incident power density, SAR, etc. The latter evaluates the
exposure of a person under realistic exposure conditions which
is of interest in epidemiological studies and often combines
both uplink and downlink exposures together. For analyzing
and optimizing wireless deployments, the realistic exposure
assessment is important [8], especially when co-optimizing the
exposure with other performance criteria. In [9], the authors

address this concern by creating a network planning tool to
jointly optimize transmission exposure and coverage. Further-
more, the author in [10] decomposes exposure into uplink and
downlink and applied a joint minimization to lower the total
human exposure dose. A more realistic approach by using a
wireless testbed is proposed by [8]. The paper evaluated the
Exposure Index of an LTE data scenario implemented in a real
urban area (part of the 7th district of Paris) and quantifies the
total exposure of a population in the area.

B. Audio Quality

In contrast to methods for calculating the exposure in
Wi-Fi networks, the field of calculating audio quality objective
is rather mature and sufficient research has already been car-
ried out. One way of improving the audio quality in streaming
applications is by allowing dynamic source rate adaptation.
The authors in [11] presented this concept such that by using
RTCP receiver reports to understand the Network condition,
the bandwidth of the source audio is adjusted and the quality
of the receiver is improved with continuous delivery and
lower packet loss. On another level, a method for optimizing
the audio quality of a VOIP application (using MOS score)
in a WiMAX network is presented in [12]. Furthermore,
the author in [13] extended this work towards multiple wireless
technologies by including Wi-Fi and LTE along with WiMAX
and optimized three different audio codecs while searching for
the best audio quality. In [14], Quality of Experience (QoE) of
an audio in wireless networks is guaranteed by jointly optimiz-
ing application layer and lower layer networking parameters.
Looking into handover performance and the influence on audio
quality, the authors in [15] have proposed the use of a MOS-
based handover scheme over the traditional Received Signal
Strength (RSS) based handover scheme. The numerical results
show that the MOS-based handover scheme maintains high
call quality and reduce the probabilities for both handover
dropping and call dropping.

C. Multi-Objective Optimization in Wireless Networks

As discussed in the introduction, wireless networks typically
exhibit a wide range of conflicting objectives. In the field of
antenna design, for example, there exists a significant amount
of work on Pareto front analysis and multi-objective optimiza-
tion in relation to field/electrical and geometrical properties.
The authors in [16] and [17] have used Response Surface
Approximation (RSA) models and sequential domain patching
to optimize the geometry of a compact DRA antenna and
a planar monopole antenna respectively. Surrogate modelling
tools are also applied in antenna design to cut down the time
intensive operation [18], [19]. In wireless protocol stacks,
however, the use of Pareto front analysis and multi-objective
optimization is quite limited. As such, this section gives an
overview of multi-objective optimization approaches that have
previously been applied to wireless protocols.

Throughput and outage probability, for example, are two
conflicting objectives described in [20]. Maximizing the
throughput of the first network counteracts the outage proba-
bility of the second network, which depends on the received
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interference due to the first network activity. In their work,
an analytical framework is used to simulate and find the
OPF of the two wireless networks by applying a channel
coding scheme. Another Pareto front optimization on intru-
sion detection accuracy of wireless sensor networks and
memory consumption is considered by Stehlk et al. [21].
NSGA-II and SPEA2 optimizers were used to locate the
APF of the design space composed of 25 million parameters.
The inherent large design space demands the use of evolu-
tionary algorithms since they work in sample batches of the
population and their computational demand is relatively sim-
ple. Looking into a multi-user Orthogonal Frequency Division
Multiplexing (OFDM) system, a Pareto front of carrier capac-
ity and power consumption is constructed by using Multi-
Objective Particle Swarm Optimizer (MOPSO) [22]. Even
though they compare the performance of a modified MOPSO
with NSGA-II, the exceptionally low computational power
required by the MOPSO limits its usability for computational
expensive wireless network problems. Looking into cellular
networks, the authors in [23] optimized the throughput sum
power of base and relay stations while guaranteeing an end
to end Signal-to-Noise Ratio (SNR) metric. A more recent
work on multi-layer parameter optimization of Wireless Sensor
Networks is presented by [24]. The authors have collected an
extensive list of performance metrics (i.e. energy, throughput,
delay and loss) out of 7 multi-layer parameters (i.e. packet
inter-arrival time and payload size from application layer, max-
imum queue size, number of transmission and retry delay from
MAC layer, transmission power level and distance between
nodes from PHY layer). In total, around 50 thousand parameter
configurations were experimented within 6 month duration
which shows how exhaustive searching can be a tedious and
time consuming task.

In general, most of the wireless problems considered in
literature use simulations with low computational complexity
for approximating the OPF. However, for experimental and
time intensive problems, the above solutions become imprac-
tical. To the best of our knowledge, this paper is the first
to experimentally optimize and analyse the Pareto front of
exposure and audio quality objectives from an experimental
Wi-Fi conferencing set-up.

III. MOSBO

Surrogate-based Optimization (SBO) methods have proven
themselves to be effective in solving complex optimiza-
tion problems, and are increasingly being used in dif-
ferent fields [18], [25]–[27]. Unlike multi-objective evolu-
tionary algorithms such as NSGA-II [3], SMS-EMOA [4]
and SPEA2 [5], surrogate-based methods typically require
very few experiment iterations to converge. This feature
makes surrogate-based methods very attractive for solving
optimization problems that require time-consuming wireless
experimentation.

A. Efficient Multi-Objective Optimization (EMO)

The expected improvement and Probability of Improve-
ment (PoI) criteria are widely used for single-objective

Fig. 1. Flow chart of the Efficient multi-objective Optimization (EMO)
algorithm [7].

optimization such as electromagnetic and aerodynamic prob-
lems [19], [28]. Recently, multi-objective versions of these
criteria are increasingly being used to solve complex multi-
objective problems [7], [29]. While they have been used
in SBO schemes, due to the computational requirements,
their applicability in practice has been limited to problems
of 2 objectives. The recently introduced EMO algorithm [7]
provides an efficient computation method and can be applied
to problems up to 7 objectives.

A flowchart of the EMO algorithm is shown in Figure 1.
The algorithm begins with the generation of an initial set of
experiments X corresponding to different settings x of the
network parameters. These initial configurations are executed
on the testbed, in order to evaluate corresponding values
of the objectives f j (x), for j = 1 . . .m. Each objective
function f j (x) quantifies a QoS performance characteristic
and is approximated by a Kriging surrogate model. Based
on the models, useful criteria can be constructed to iden-
tify new configurations of network parameters that likely
improve the currently identified Pareto set P of Pareto-optimal
solutions. As such, these criteria are used to define a new
experiment (i.e., a point) in the parameter space, which is
again executed on the testbed to evaluate the expensive QoS
objective functions f j (x). The models are then updated with
this new information and this process is repeated in an iterative
manner until a predefined stopping criterion is met.

This paper adopts the hypervolume-based PoI criterion. It is
important to note that the computation of these criteria requires
a prediction of the modeling uncertainty. Hence, the choice
of surrogate model is limited to those which can provide the
uncertainty of the prediction (such as e.g. Kriging).

B. Kriging

Kriging models are very popular in the optimization of
complex systems [30]. This is partly due to the fact that
Kriging models provide the mean and prediction variance
which can be exploited by statistical sampling criteria. Their
popularity also stems from the fact that many implementations
are widely available [31]–[33].

Assume that a set of n samples X = (x1, . . . , xn)
′ in d

dimensions having the target values y = (y1, . . . , yn)
′ is given.
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Fig. 2. A Pareto set for two objectives consisting of Pareto points f i ,
for i = 1 . . . v . f min and f max denote the ideal and anti-ideal point
respectively [7]. The exclusive hypervolume expands the dominated region of
the Pareto front (white region enclosed between f max and the Pareto front)
which at the same time shrinks the non-dominated region.

The prediction mean and prediction variance of Kriging are
then derived, respectively, as,

ŷ(x) = α + r(x) ·�−1 · (y−1α) (1)

s2(x) = σ 2
(

1 − r(x)�−1r(x)� + (1 − 1��−1r(x)�)
1��−11

)
(2)

where 1 is a vector of ones, α is the coefficient of the
constant regression function, determined by Generalized Least
Squares (GLS), r(x) is a 1 × n vector of correlations between
the point x and the samples X , and σ 2 = 1

n (y − 1α)��−1

(y − 1α) is the variance.
� is a n × n correlation matrix of the samples X ,

� =
⎛
⎜⎝
ψ(x1, x1) . . . ψ(x1, xn)

...
. . .

...
ψ(xn, x1) . . . ψ(xn, xn)

⎞
⎟⎠ ,

with ψ being the correlation function. The correlation function
greatly affects the accuracy of the Kriging model and in
this paper the Matérn correlation function [34] with ν = 3

2
is used,

ψ(xa, xb)
Matérn
ν= 3

2
=

(
1 + √

3l
)

exp
(
−√

3l
)
,

with l =
√∑d

i=1 θi (xi
a − xi

b)
2. The hyperparameters

θ are identified using Maximum Likelihood
Estimation (MLE).

1) Hypervolume-Based Probability of Improvement: In a
multi-objective setting the improvement I over the current
Pareto set P can be defined in several ways. The hypervolume
metric (or S-metric) [35] is often used to evaluate the goodness
of the Pareto set. The hypervolume indicator H (P) denotes the
volume of the region in the objective space dominated by the
Pareto set P , bounded by a reference point f max + ε, where
f max denotes the anti-ideal point.

A better Pareto set has a higher corresponding hyper-
volume H (P). The contributing hypervolume Hcontr(p, P)
of a Pareto set P relative to a point p (see Fig. 2) is
defined as,

Hcontr(p, P) = H (P ∪ p)− H (P), (3)

Fig. 3. Generalized architecture of a wireless network showing the wireless
nodes, the network manager and the associated data/control planes.

Hcontr measures the contribution (or improvement) offered
by the point p over the Pareto set P and can be used to define
a scalar improvement function I as,

I (p, P) =
{

Hcontr(p, P) : p is not dominated by P
0 : otherwise.

(4)

Let y j = f j (x), ŷ j (x) be the prediction mean, and s2
j (x) be

the prediction variance of a given surrogate model associated
with the j th objective, then a Gaussian probability density
function φ j with mean ŷ j (x) and variance s2

j (x) is defined as

φ j [y j ] � φ j
[
y j ; ŷ j (x), s2

j (x)
]
, (5)

In this paper, Hcontr is used as the hypervolume contribu-
tion for I to compute the hypervolume-based probability of
improvement (PoI) [7]. The hypervolume-based PoI can be
written as the product of the improvement function I (ŷ, P)
and the multi-objective PoI P[I ],

P[I ] =
∫

y∈A

m∏
j=1

φ j [y j ]dy j , (6)

Phv [I ] = I (ŷ, P) · P[I ], (7)

where ŷ = (ŷ1(x), . . . , ŷm(x)) is a vector containing the
prediction models of each objective function for a point x.
The integration area A of P[I ] corresponds to the non-
dominated region. The reader is referred to [7] for further
details.

C. Integration of MOSBO in Network Architectures

Even though the MOSBO optimizer has been quite popular
for optimizing electromagnetic and antenna designs, it has not
yet been used in the scope of wireless networking. This section
discusses how the MOSBO optimizer can be integrated in
wireless network applications.

A general wireless network is shown in Figure 3, and
consists of individual wireless nodes, a network manager
and a control and data plane. The network manager utilizes
the data plane to send or receive data to and from the



6666 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 10, OCTOBER 2016

Fig. 4. Top level view of the Wi-Fi conferencing set-up mapped onto the wireless testbed. Listener nodes are located on the first 4 rows (nodes 1-20,
22-31 and 33-42) and the speaker node is located on the bottom center (node 55).

wireless devices. In addition, there are a number of design
parameters and performance metrics that can be config-
ured or retrieved on the devices of the wireless network using
the control plane, typically using SNMP or similar network
management protocols. In traditional networks, configuration
parameters are often configured using safe (but non-optimal)
settings, or configured based on predictions from non-realistic
simulations. To find optimal settings, usually an exhaustive
search of all design parameters is required. In contrast, the net-
work manager can make use of optimization tools so that
the time consuming part of the exhaustive search can be
traded off with a minor quality degradation. To this end,
MOSBO can be used in wireless networks to locate the
optimum design settings within a relatively short amount of
time. In order to do so, the MOSBO optimizer is connected
to the network manager as shown in the Figure 3 (shown
inside the broken rectangle). In the learning/exploration phase,
the MOSBO optimizer builds a surrogate model out of the
design parameters and their performance objectives. After that,
MOSBO starts optimizing the system from the constructed
model and provides new design parameters to be configured
on the wireless network. This way, the MOSBO optimizer
is integrated in wireless networks and near-optimum perfor-
mance is realized within a relatively short duration of time.

IV. EXPERIMENTAL VALIDATION

To evaluate the suitability of the MOSBO approach in
wireless problems, a Wi-Fi conferencing scenario is validated.
This section outlines the scenario, the input parameters and the
performance objectives of the Wi-Fi conferencing scenario.

A. Experiment Scenario

In a multilingual conferencing session, a speaker’s voice
is translated into different languages and streamed to
listeners. Such an application is typically used in inter-country
meetings where different people use different languages to
communicate each other with the help of translators. Usually
such a conferencing system relies on a wired network and
scalability is often a challenge or building a new system is time
consuming. The counter part, a Wi-Fi conferencing system,
is used in this paper since it addresses the aforementioned
challenges. Compared to the multilingual audio conferencing
system, a Wi-Fi conferencing system broadcasts the translated

TABLE I

EXPERIMENT RESOURCE DESCRIPTION: HARDWARE COMPONENTS AND
SOFTWARE TOOLS

TABLE II

INPUT PARAMETERS OF THE WI-FI CONFERENCING EXPERIMENT. THE

DESIGN SPACE CONSISTS OF 6528 (32 × 3 × 4 × 17) ELEMENTS

audio stream via a Wi-Fi channel and the listeners pick and
play it through a wireless headset.

Figure 4 shows the Wi-Fi conferencing set-up which is
composed of a speaker node transmitting an audio signal on
Wi-Fi channel 1 (2412 MHz center frequency), 40 listener
nodes receiving the audio signal, a central database collecting
the measurement data, a MOSBO optimizer optimizing design
parameters and an Experiment Controller (EC) orchestrating
the experiment. The hardware components and software tools
used in the Wi-Fi conferencing set-up are shown in Table I.

In order to realize the Wi-Fi conferencing set-up, the iMinds
w-iLab.t wireless testbed [36] is used. The iMinds w-iLab.t
wireless testbed is equipped with heterogeneous devices such
as embedded PCs (having Wi-Fi, Zigbee and Bluetooth tech-
nologies), Long Term Evolution (LTE) femtocells/UE dongles,
advanced spectrum sensing devices (i.e. Universal Software
Radio Platform (USRP), IMEC Sensing Engines, and Wireless
open Access Research Platform (WARP) boards) and roomba
robots to facilitate mobility experiments.

B. Input parameters

While transmitting the audio signal, the speaker node can
dynamically adapt four configurable parameters (i.e. Wi-Fi
Tx-Power, Wi-Fi Tx-Rate, Codec Bit-Rate and Codec Frame-
Length). Table II provides the description and ranges of each
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Fig. 5. Audio transmit path of the Wi-Fi conferencing experiment. Four
configurable parameters are available: codec bit rate, codec frame length,
Wi-Fi Tx-rate and Wi-Fi Tx-power.

input parameter. The speaker’s audio transmit path, indicating
all input parameters, is shown in Figure 5. A raw audio file
is given to an encoder unit which outputs compressed audio
frames of a given bit rate and frame length using an opus
compression format [37]. Opus is a highly versatile audio
codec providing a wide range of bit rates and frame sizes
which work from narrow band to full band audio frequencies.
It also has a very low latency compared to other audio
codecs which makes it attractive for real-time applications.
Afterwards, the opus encoded frame is encapsulated, rate and
power adjusted before sent over the air.

C. Performance Objectives

The scenario is optimized towards two objectives: increasing
the audio quality and reducing the transmission exposure. The
main reason for selecting the two objectives is the conflicting
influence each configurable setting has on their performance:
all settings from Table II influence both audio quality and
exposure objectives. Increasing the codec Bit-Rate of an
audio signal, for example, will improve the audio quality but
negatively impacts the exposure since more packets need to
be transmitted. Similar conflicting influences are present for
the Tx-Rate, codec Frame-Length and Tx-Power parameters.
Although it is easy to predict that all settings from Table II will
influence both objectives, without performing the experiments
it is not possible to predict which of these settings will have
the largest influence on each of the objectives and which
combination of settings will result in optimal performances.
This situation is very typical for many wireless systems:
engineers typically have a-priori domain knowledge about
expected impacts of parameter settings, but this knowledge
does not suffice to identify the exact trade-offs and optimal
settings. The next sections describe in more detail how each
of the objectives are calculated.

1) Audio Quality: As a quantitative measure to evaluate
audio quality, MOS scores are often used. A MOS score rep-
resent audio quality using a scale of 1 to 5 [38], with 5 being
the best and 1 being the worst. In wireless networks, the audio
quality typically degrades due to (i) the encoder settings
and (ii) the transmission of the audio over the lossy medium.
Most MOS score calculations do not differentiate between
these two different influences. As such, a new formulation
of the MOS score that takes into account both the degradation
from the encoder settings and the network settings is shown
in Figure 6. In this formulation, the audio quality (MOS) of
the Wi-Fi conferencing scenario is calculated twice: first after
the encoder unit and later after the wireless transmission.

In an earlier work [39], the audio quality degradation over a
wireless medium has been discussed. Starting from a reduced

Fig. 6. MOS calculation flowchart. The audio quality degradation is
calculated in two phases: once after the encoder unit and again after the
wireless transmission.

TABLE III

AUDIO BANDWIDTH AND EFFECTIVE SAMPLE RATE

OF DIFFERENT AUDIO CLASSES

Fig. 7. Normalized OPUS MOS scores as a function of bitrate for different
audio classes.

audio quality after the encoder unit (MOS_enc), the audio is
impacted by transmission latency, jitter and packet loss which
results in the received audio quality (MOS_Rx).

M OS_Rx = f (M OS_enc, latency, j i t ter, packet Loss) (8)

Whereas inside the encoder unit, a quality loss is introduced
which is a function of the original audio quality, encoder bit
rate, type of encoder and audio class used.

M OS_enc = f (M OS_orig, bi trate, type, class) (9)

Unlike the calculation of MOS degradation over a wireless
medium, most of the work done to characterize the encoder
losses is through subjective tests by using humans evaluating
the quality of an encoder output at different bitrates and for
different audio samples [37], [40], [41], [42]. Since subjec-
tive testing is not possible in an automated wireless sys-
tem, in this work the Perceptual Objective Listening Quality
Assessment (POLQA) method [43] is applied. POLQA is a
digital speech analyser model which compares the original
and the degraded audio samples and calculates the perception
difference using the tradition MOS scale. POLQA is also fully
automated and as such is an ideal candidate for the Wi-Fi
conferencing scenario. The authors of [44] have evaluated
the POLQA estimator by applying speech samples to the
opus encoder at different sample rates. Because the audio
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M OS_enc(M OS_orig, bi trate, class) = M OS_norm(bi trate, class) ∗ (M OS_orig − 1)+ 1 (10)

EISAR = 1

T

NT ,Np,NE ,NR ,NC ,NL ,Npos∑
t,p,e,r,c,l,pos

ft,p,e,r,l,c,pos

⎡
⎣ NU∑

u

(
dUL PTX

) + dDL Sinc

⎤
⎦ [

W

kg

]
(11)

sample rate inherently impacts the audio bandwidth, this also
means that the POLQA estimator has already been applied for
different classes of audio as shown in Table III.

Since our goal is to calculate the MOS score after the
encoder unit, we make the assumption that the reduced audio
quality is independent of the original input quality but only
on the encoder output bitrate. Therefore the different OPUS
POLQA curves from [44] are normalized and the result-
ing output is shown in Figure 7. The performance curves
in Figure 7 are not calculated from a single audio source
but rather from 5 different audio speeches whose bandwidth
utilization is according to their audio classes. If a wideband
audio signal is to be encoded, for example, then the green
curve is used to get a reasonable quality estimation after the
encoder unit. Afterwards, the absolute MOS score is calculated
first by scaling and later by translating the normalized MOS
score as shown in Equation 10. The source audio file [45] used
in this paper has a wideband audio class and a quality score
of MOS_orig = 4.75.

2) Transmission Exposure: For objectively assessing the
transmission exposure, recently Varsier et al. [8] defined a new
metric, the Exposure Index (EI), which aggregates downlink
and uplink exposure data and quantifies the total exposure of
a population in an area. Assuming negligible uplink exposure
from other users which are not part of the system under
test, the EI in SAR units is given by Equation 11 where t
is the period within the considered time frame T, p is the
population category, e is the environment, r is Radio Access
Technology (RAT), c is the cell type, l is the user load profile,
pos is the posture, u is usage of the device, dUL is the uplink
dose in units of W/kg for 1W of transmitted power, PTX is the
average transmitted power by the mobile device, dDL is the
downlink dose in units of W/kg for 1 W/m2 of received power
density, Sinc is the average received incident power density and
f is the fraction of the population p.

This exposure formulation is a generalization of the different
possibilities that a person can be exposed from a wireless
transmission. However, the SAR calculation in [8] is described
mainly from a theoretical point of view, and was (i) never
defined for real Wi-Fi traces and (ii) was never calculated in
real-life using off-the-shelf radios. As such, for experimen-
tally measuring the exposure of a Wi-Fi conferencing set-
up, a new metric is needed that can be derived using off-
the-shelf commercial Wi-Fi chips (in contrast to the use of
dosimeters which are frequently used in exposure research).
Applying the formula to the Wi-Fi conferencing set-up with
a single population category, a homogeneous environment,
a Wi-Fi Radio Access Technology, an access point cell type,
an audio broadcasting load profile, a standing posture and a

single purpose device usage, the formula simplifies to

EISAR = 1

T

[ NT∑
t

(
dUL PTX

) + dDL Sinc

][
W

kg

]
(12)

Unlike Equation (11), shown at the bottom of the page.
the calculation of PTX and Sinc in Equation (12) lead to an
exact assessment of the EI (with known locations and wireless
parameters) for the speaker and listener nodes respectively. For
every transmitted and received packets, the speaker and the lis-
tener nodes calculate the time duration a packet has occupied
the wireless medium (the “Channel Occupation Time (COT)”).
During the COT amount of time, the speaker antenna next to a
speaker induces a SAR that is proportional to the transmitted
power PTX and the speaker antenna also induces a SAR
that is proportional to the incident power density Sinc at the
listeners. After that, the electromagnetic energy absorption per
kilogram of body mass is calculated by applying the uplink and
downlink absorption parameters dUL = 0.0070 W/kg for 1W
of transmitted power and dDL = 0.0028 W/kg for 1 W/m2 of
received power density respectively [10]. Finally, the average
exposure (power per kilogram of body mass) is calculated
by summing all energy absorptions for every transmitted
and received packets and dividing the result by the time
duration T .

V. RESULT AND DISCUSSION

In this section, the results from the Wi-Fi conferencing
optimization experiment are discussed. First, the behavior of
the system is analyzed by creating an exhaustive search model
that includes all possible parameter combinations. The next
sections analyze the performance of the MOSBO optimized
system, by calculating the computational overhead, analyzing
the impact of different stopping criteria, and investigating the
impact of the initial sample size.

A. Exhaustive Search Model

The exhaustive search model is a plot of the objec-
tive performances using every input parameter combination.
Performing an exhaustive search is not feasible in most
realistic situations due to the large number of experiments
that need to be performed (6528 experiments in our case, see
Section IV-B). However the outcomes of an exhaustive search
experiment are included in order to compare with the time-
efficient MOSBO experiments.

Figure 8(a) shows the results of the exhaustive search
model. The OPF is calculated by selecting the non-dominated
elements from the exhaustive search experiment and is indi-
cated by a red line. By varying individual design parameters,
interesting relations between the input parameters and the
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Fig. 8. Exhaustive search model and OPF plot of the Wi-Fi conferencing experiment. The Y-axis represents the audio quality objective using an inverted MOS
score [−1 to −5] and the X-axis represents the transmission exposure of combined uplink and downlink EI values in uW/kg. (a) Visualizing an exhaustive
search by using all parameter combinations. (b) Zooming into the top three rows. (c) Visualizing Tx-Power and Bit-Rate variation while keeping Tx-Rate and
Frame-Length fixed. (d) Zooming into the lower left knee point region.

performance metrics can be discerned. Figure 8(c) shows
the impact of varying Tx-Power and codec Bit-Rate para-
meters while keeping the Frame-Length and Tx-Rate fixed
at their lowest values. By doing so, an exponentially rising
and logarithmically spaced relation between the audio quality
and exposure objectives can be observed. Varying the codec
Bit-Rate parameter leads to the exponential rising rela-
tion (green points @ Tx-Power = 15dBm), whereas the
logarithmic spacing is caused by varying the Tx-Power para-
meter (blue points @ Bit-Rate = 7200bps). Since exposure is
proportional to the number of sent packets (which is directly
related to the choice of codec Bit-Rate), also the audio-
quality has an exponentially rising relation with the codec
Bit-Rate [37].

To a lesser extent, the codec Frame-Length parameter
also affects the audio quality objective. This is visualized
in Figure 8(b) by zooming in the top three rows of the overall
results. The codec Frame-Length parameter directly affects the
latency of audio packets and thus the audio quality is reduced

when the Frame-Length is increased which results in a linear
relationship between the Frame-length parameter and audio
quality objective (blue points @ Frame-Length = 60msec,
green points @ Frame-Length = 40msec and red points @
Frame-Length = 20msec). In contrast, the audio quality objec-
tive shows no impact when Tx-Power is increased because the
experiment was performed in a shielded environment where no
interference was present.

The relations between input parameters and objective as
illustrated above are difficult to predict exactly, even for
domain experts. Although it is interesting to plot these inter-
actions, in many situations the network operator is only inter-
ested in identifying the Pareto front with optimal operation
points (i.e. the red line in Figure 8(a)). A zoomed in version is
shown in Figure 8(d). Based on the exhaustive search, the best
attainable values of the respective objectives is an exposure
index of 0.004125 uW/kg and a MOS score of 4.41835.
These are the best values of each objectives and can not
be improved further by using any parameter combination.
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When optimizing a solution in which both metrics are consid-
ered, the knee point of the OPF is a usual point to consider.
The knee point of the OPF is a Pareto point that is closest
to a hypothetical intersection point formed by the asymptotic
audio quality and exposure lines (i.e. MOS = 4.41835 and
exposure = 0.004125 uW/kg). By doing so the knee point
of the OPF, shown as a black dot in Figure 8(d), has design
parameters [Bit-Rate = 28000bps, Frame-Length = 20msec,
Tx-Rate = 24Mbps, Tx-Power = 0dBm] and performance
objectives [MOS = 4.4128, exposure = 0.018097 uW/kg].

In summary, the exhaustive search model gives insights
to relations existing between the objectives and the design
parameters and resulted in an optimal Pareto front. The
next sections will use the MOSBO optimizer introduced in
Section III in order to approximiate the OPF using fewer
experiments.

B. Stopping Criteria

Since the number of experiments should be reduced, it is
crucial to identify stopping criteria that determine when the
approximate solution (in this case the OPF) is accurate enough
and the experimentation can be stopped, thereby avoiding
unnecessary experiment iterations. Typically, stopping criteria
are based on estimating the Approximate Pareto Front (APF)
progress. There are a number of methods to estimate the
APF progress, most of which have previously been applied to
Multi-Objective Evolutionary Algorithms (MOEA), however
for MOSBO these have not yet been evaluated. Stopping
criteria are typically composed of (i) progress indicators,
(ii) evidence gathering and (iii) a stopping decision. The next
subsections will discuss each of them in more detail.

1) Progress Indicators (PI): The progress indicator calcu-
lates from the collected dataset how much the solution has
improved from the previous iteration.

I Mutual Domination Rate (MDR): MDR is a progress
indicator evaluated between consecutive Pareto sets [46].
The consecutive Pareto sets are compared and MDR
calculates the domination rate of the recent set on the
previous set. MDR values range from −1 to 1 where
1 indicates a highest domination, −1 indicates no dom-
ination at all and others represent scaled domination
rates according to their amount. A high MDR value
indicates that the newest Pareto set shows a significant
improvement when compared to the Pareto set that was
obtained during the previous experiment run.
Mathematically the MDR is defined as,

Imdr
(
P∗

t , P∗
t−1

)=
∣∣�(

P∗
t−1, P∗

t

)∣∣∣∣P∗
t−1

∣∣ −
∣∣�(

P∗
t , P∗

t−1

)∣∣∣∣P∗
t

∣∣ (13)

where |A| is the number of elements in A and �(A, B)
is the set of elements of A that are dominated by at least
one element of B.

II Epsilon Dominance (ED): Similar to the MDR indicator,
the ED indicator is also calculated between consecutive
Pareto sets [35]. The ED calculates a minimum factor ε
by which the current Pareto set is better than the former
Pareto set with respect to all objectives.

Fig. 9. A hypothetical dual objective problem having OPF=P and three
consecutive Pareto sets (i.e. A1, A2 and A3). Iε(A1, A3) calculates the
minimum factor ε that needs to be added or multiplied on all A3 objectives
to compare with the Pareto set of A1. This gives Iε+(A1, A3) = -1 and
Iε∗(A1, A3) = 0.9. On the other hand, Iε+(A1, A2) and Iε∗(A1, A2) evaluate
to 0 and 1 respectively as all elements of A2 exist in A1.

Mathematically ED, for Pareto sets A and B each having
n design objectives, is defined as,

Iε+ (A, B) = max
Z2εB

min
Z1εA

max
1≤i≤n

(
Z1

i − Z2
i

)
(14)

Iε∗ (A, B) = max
Z2εB

min
Z1εA

max
1≤i≤n

(
Z1

i / Z2
i

)
(15)

for additive and multiplicative versions respectively.
In the experiments performed in this paper, the additive
ED indicator is only applied. Figure 9, provides a
graphical explanation of the ED indicator.

III Hyper Volume (HV): The HV indicator [47], previously
discussed in section III-B.1, calculates the volume of
the dominated region of a given Pareto set bounded by
a reference point r and dominated by all points in the
Pareto set. As the optimization progresses, the Pareto
set starts to converge to the OPF which also increases
the HV indicator. Therefore, larger HV values indicate
better Pareto sets.

2) Evidence Gathering Process (EGP): Next, the evidence
gathering process performs a statistical analysis to calculate
the changes in the progress indicators over time.

I Moving Average (MA): MA evidence gathering calcu-
lates the average of a given indicator values by moving
along a fixed calculation window. In time, indicators
are expected to reach a stable value, allowing it to
compare with a threshold stopping decision at a later
stage.

II STandard DEViation (STDEV): STDEV evidence gath-
ering calculates the standard deviation on a collection
of indicator values to estimate a possible experiment
stagnation. STDEV was used in [39] in conjunction with
a combined objective indicator.

III Linear Regression (LR): LR evidence gathering calcu-
lates the linear regression of a collection of indicator
values and compares it against a stopping decision once
the goodness of fit is satisfied. Types of Indicators often
used with LR evidence gathering are MDR, HV and ED.

IV Kalman Filtering (KF): KF evidence gathering uses the
Kalman Filter to estimate the state of a dynamic system
from noisy measurements [46]. Kalman Filters assume a
system to be linear and consecutive iterations to be only
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TABLE IV

STOPPING CRITERIA COMBINATIONS USED IN MOSBO EXPERIMENT

dependent on previous measurements. At each iteration,
the state vector of the system and the covariance of the
vector are updated based upon a new observation. The
filtered estimate and its error value will then be used
to make a stopping decision. MDR indicator is mostly
applied with KF evidence gathering.

3) Stopping Decision (SD): Finally, the result from the
evidence gathering is compared against a predefined stopping
decision.

I ThresHoLD (THLD): Threshold stopping decision com-
pares the evidence gathering estimate against a fixed
value and stops iterating when the evidence gathering
process falls below a predefined threshold. Threshold
stopping decision is often used with STDEV and MA
evidence gatherings.

II ciNormal: ciNormal is similar to the Threshold stop-
ping decision but rather than making plain threshold
comparison, it uses a normal-distribution to address the
uncertainty of the EGP values. KF EGP is one typical
example that uses the ciNormal stopping decision.

III Conditional THreshoLD (C-THLD): Sometimes the val-
ues from EGP are not acceptable until a certain condition
is fulfilled. LR EGP, for example, needs to have a very
low Root Mean Squared Error (RMSE) between the PI
values and their linear approximation before using the
slope parameter as a stopping decision.

C. Performance Evaluation

This section evaluates the performance of the MOSBO
approach when optimizing the Wi-Fi conferencing scenario
described in Section IV. To this end, the MOSBO experiment
is conducted by selecting different stopping criteria (i.e. indica-
tors, evidence gathering and stopping decision), and comparing
the results with those obtained from the exhaustive search
model (Section V-A). Two performance metrics are evaluated:
(i) Speed up Factor and (ii) Population Domination Rate.

• The Speed up Factor (SuF) compares the number of
experiment iterations that a MOSBO experiment requires
compared to the number of iterations for an exhaustive
search experiment. Higher values of the SuF correspond
to faster optimizations.

• The Population Domination Rate (PDR) gives an indi-
cation of the closeness between the APF and the OPF.
It expresses the percentage of elements dominated by the
Pareto set from the MOSBO experiment when compared
to the exhaustive search model. As such, higher PDR
values indicate a better Pareto front estimation.

To ensure an adequate approximation of the OPF, multiple
stopping criteria have been combined: the MOSBO optimizer

Fig. 10. MOSBO Pareto optimization plot after the stopping criteria is met.
(a) Pareto front overview, including the Pareto front of the exhaustive search
model (red line), the Pareto front from the MOSBO experiment (blue line) and
the intermediary experiments (dots). (b) Values of the progress indicators as
calculated during the experiment iterations. (a) Pareto Front plot. (b) Progress
Indicators plot.

stops only after satisfying all of them. Table IV gives an
overview of the different stopping criteria combinations used.
Although an infinite number of stopping criteria combinations
are possible, the selected values have shown to be useful in
previous multi-objective optimization problems. In the EGP
calculation, the WIDTH parameter is set to 10 for ED and HV
progress indicators. The R and Pr parameters (values taken
from [46]) are used as a noise value and as an uncertainty
estimator of the KF respectively. Regarding the HV indica-
tor, linear regression is applied once the RMSE is below a
minimum value (20 times the value of epsilon). Finally SD
thresholds of STDEV and LR take epsilon as the lower bound
and KF take −0.9 (90% of minimum MDR) as a lower bound.

Figure 10(a) shows the snapshot after the end of the
MOSBO optimization by comparing the OPF (red curve)
with the summary attainment surface plots of 8 different
experiments. Summary attainment surface plots [48] are means
to visualize the distribution of different APFs according to
statistical models. In Figure 10(a), 5 different estimators (best,
1st quartile, median, 3rd quartile and worst) are visualized.
The best and worst plots represent the boundaries of all APFs
but they are biased estimators of the population because they
show wide variations for different experiments. On the other
hand, the 1st quartile, the median and the 3rd quartile plots
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are stable estimators, median being the best of all showing the
least variation across different experiments.

The average number of experiment iterations to obtain the
APF is 94 and due to its limited count, the APF partially
overlaps the OPF. Compared to the exhaustive search exper-
iment, the PDR of the MOSBO solution corresponds to
96.58%, meaning that the APF dominates 96.58% of the
complete design space. Although the MOSBO Pareto front
locates most of the optimal solutions, some Pareto optimal
solutions were not identified especially on the knee point
region of the OPF.

To analyze the behavior of the MOSBO APF over time,
a progress Indicator plot is shown in Figure 10(b). In the
figure, three PIs (MDR, ED, HV) are visually presented,
which together form the MOSBO stopping criteria. The MDR
indicator is highly fluctuating while the others are relatively
stable. As MDR indicator only accounts for the number of
updated Pareto elements but not their magnitudes, this tells
that the Pareto elements were showing slight variations which
couldn’t have noticeable effect on the ED and HV indicators.
By applying a combined stopping criteria (Table IV) the
MOSBO solution converged after 94 iterations, corresponding
to a speed up factor of 6528/94 = 69.45 and Population
Domination Rate of 96.58%.

D. Initial Sample Size Sensitivity

In the previous section, it was mentioned that the MOSBO
experiment converged after 94 experiments. Although the
MOSBO optimizer includes selection criteria for identify-
ing the most promising candidate settings (i.e. the expected
improvement criteria, see Section III-A), it relies on the size of
the initial samples and the sampling method before generating
the initial model. The choice of the sampling method was
briefly discussed in the previous paper [39], where Latin
Hypercube Sampling (LHS) was shown to have best results.
This section expands on this discussion by making a sensitivity
analysis over the iteration count.

Providing additional samples typically result in a better ini-
tial model, at the cost of additional experiments. As indicated
in [39], the problem of exploration vs. exploitation trade-off
can be addressed by a good selection of the initial sample size.
The initial sample size should explore a problem adequately
such that the APF can be retrieved in the shortest time possible.
Although previous works in other applications analysed the
optimal number of sample points (for example, [49] advises
to use 10 times the number of design parameters), the optimal
number depends on the smoothness (i.e. the predictability) of
the objective functions over the design space.

To evaluate the sensitivity of different initial sample sizes,
Figure 11 shows the iteration count of MOSBO experiments as
a function of the initial sample size. The iteration count indi-
cates the total number of experiments that are performed until
the stopping criteria are satisfied. To indicate the efficiency
of the MOSBO optimizer, the PDR metric is also plotted
in Figure 11.

As indicated by Figure 11, the iteration count oscil-
lates along a linear regression line (broken purple color on

Fig. 11. Sensitivity analysis of different initial sample sizes as a function of
Iteration count.

Figure 11) with a slope of 1.05 ≈ 1.0. On average, the iteration
count increases with the same proportion as with the increase
in the initial sample size. This indicates that on average,
the MOSBO optimizer spends an equal number of iterations
for any initial sample size selected. This is also related to the
smoothness nature of the objective functions over the design
space. Hence, the Wi-Fi conferencing scenario presented in
this paper is not sensitive to different initial sample sizes
and 22 initial samples are sufficient to get the APF in the
shortest time possible (33 iterations). However, as in many
cases the smoothness of the evaluated solution is not known
a priori, a more conservative amount of samples (i.e. 10*design
parameters or 40 initial samples) have been used following the
guidelines from [49].

E. MOSBO Computational Complexity

Besides the time required for experimentation, also the
optimizer spends time calculating the next set of parameter
settings that should be investigated. Constructing the kriging
models involves a Cholesky decomposition which has an order
of O(n3) amongst other matrix operations [50], [31]. Since
the kriging models are constructed for each design objec-
tive, the overall computation is multiplied by the number of
design objectives involved. On the second step, the constructed
kriging models are processed to generate the non-dominated
region and the computational complexity is a function of the
Pareto points ([7, Fig. 5(a)]). At the last section of the actual
optimization, cost prediction and variance prediction processes
are involved which require O(n) and O(n2) computational
complexities respectively. The actual execution time of the
MOSBO optimizer is dependent on the type of hardware
used. Specific to our experimentation set-up (Table I), a single
MOSBO iteration needs an average of 1 second, which is
significantly less than the time required for most real-life
experiment iterations.

VI. CONCLUSION

This paper provides a method to identify performance trade-
offs in wireless systems through efficient Pareto optimizations.
Wireless systems typically have a large design space with sev-
eral interacting parameters. Analyzing these parameters using
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a wireless experiment typically consumes a significant amount
of time due to the need to deploy, configure and monitor
devices. To reduce the time complexity, the paper applied a
Multi Objective Surrogate-Based Optimizer (MOSBO) which
works by creating a surrogate (Kriging) model out of selected
design points and their objective performances.

Afterwards, the advantages of the MOSBO optimizer
are demonstrated using a Wi-Fi conferencing scenario
where a speaker node adjusts four configurable parameters
(i.e Tx-Power, Tx-Rate, Codec Bit-Rate, Codec Frame-Length)
and measures two performance objectives (i.e. audio quality
and transmission exposure). Both objectives are influenced by
all selected parameters and can not be optimized individually
since they negatively influence each other. An automated
experimentation system was set up in which the Wi-Fi network
was integrated with a MOSBO optimizer with the aim of
identifying the Approximate Pareto Front (APF) using as few
experiments as possible.

Based on an exhaustive search model, the OPF was
determined and the interactions between input parameters
and performance metrics were described. For the MOSBO
approach, the influence of selecting different initial sample
points was analyzed and multiple stopping criteria were dis-
cussed. A combination of three stopping criteria was proposed
to ensure adequate covering of the APF. The experimental
validation of the solution compares the performance of the
MOSBO approach against an exhaustive search experiment.
The benefit of the MOSBO optimizer is demonstrated by
finishing the experiment using 94 iterations out of the com-
plete design space (6528 elements) and speeding up the
experiment 6528/94 = 69.45 times while the APF dominates
96.58% of the complete design space. Moreover, the sensitivity
analysis of different initial sample sizes on the performance
of MOSBO is investigated and it is found that the Wi-Fi
conferencing scenario is not sensitive to different initial sample
sizes.
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