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a b s t r a c t 

Classification algorithms often handle large amounts of labeled data. When a label is the result of a very 

expensive computer experiment (in terms of computational time), sequential selection of samples can be 

used to limit the overall cost of acquiring the labeled data. This paper outlines the concept of sequential 

design for classification, and the extension of an existing state-of-the-art research platform for surrogate 

modeling to handle classification problems with sequential design. The capabilities of the platform are 

illustrated on a number of use cases including real-world applications such as an ElectroMagnetic Com- 

patibility (EMC) and a Computational Fluid Dynamics (CFD) problem. The CFD problem also illustrates 

how classification can be used together with regression techniques to solve multi-objective constrained 

optimization problems of complex systems. 

© 2016 Elsevier Ltd. All rights reserved. 
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. Introduction 

Supervised learning algorithms learn the relation between an

nput space and a corresponding output space based on multi-

le examples ( samples ). After learning, the predictor can be used

o predict the output(s) of unseen data points. In case an out-

ut varies continuously, this task is referred to as regression . When

nly a distinct number of discrete outcomes are possible ( labels ),

he term classification is used. In literature, classification algorithms

sually label large data sets. To limit the massive computational re-

uirements of the learning process, the data is often sub-sampled

o obtain a smaller representative set of training data. 

Sometimes, obtaining the label for a sample is a very expen-

ive task: it might be the result of a lengthy computer simulation

r a (possibly dangerous) real-life experiment. Assuming there are

udget constraints limiting the total amount of labels that can be

cquired, obtaining the labels for all samples in the data set might

ot be possible. Although budget constraints also include applica-

ions where time and money is required for instance preparation

1] , this article focuses on labels obtained through evaluation of
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omplex physics-based (deterministic) simulators. These are used

requently in computer-aided design and engineering (CAD/CAE)

o avoid building and testing several prototypes of new prod-

cts. As these simulations have become significantly more accurate

ver the years, their computational requirements have also become

ore expensive. 

This article describes a state-of-the-art platform for surro-

ate modeling [2] with sequential design. A surrogate model is a

heap-to-evaluate mathematical regression model mimicking the 

esponse of computationally intensive simulators with continuous

esponse range, and is trained from a small set of (sequentially)

ell-chosen evaluations. The platform was recently expanded with

lassification models and some state-of-the-art sequential design

ethods targeting classification applications. The SUMO Toolbox is

ntroduced in Section 2 with a focus on these new extensions. The

oncept of sequential design is introduced in Section 3 , and the

equential sampling step for classification is discussed in more de-

ail in Section 4 . The integrated platform is then illustrated on a

umber of use cases in Section 5 . 

. SUMO Toolbox 

Designed as a research platform for sequential sampling and

daptive modeling using MATLAB, the SUMO Toolbox [3] has

rown into a mature design tool for surrogate modeling with se-

uential design offering a large variety of algorithms for simula-

ors with continuous output. The software design is fully object-

riented allowing high-extensibility of its capabilities. By default,

he platform follows the integrated modeling flow as shown in

http://dx.doi.org/10.1016/j.advengsoft.2016.05.016
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Fig. 1. Design philosophy of the SUMO Toolbox for surrogate modeling. The Toolbox was recently extended to support classification applications under budget constraints. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Microkernel architecture of the SUMO Toolbox. 
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Fig. 3 , but can also be configured to model data sets, use a one-

shot setup etc. Recently, the platform has been extended to offer

support for several classification algorithms by including several

implementations and linking the WEKA library [4] . 

Fig. 1 illustrates the design goals of the SUMO Toolbox. Expen-

sive computer simulations of complex black-box systems with sev-

eral design parameters are approximated by a cheap-to-evaluate

model, and the toolbox can also approximate outputs with a dis-

crete set of labels by training a classifier. To obtain these goals, the

SUMO Toolbox offers sequential sampling and adaptive modeling

in a highly configurable environment which is easy to extend due

to the microkernel design philosophy as illustrated in Fig. 2 . Dis-

tributed computing support for evaluations of data points is also

available, as well as multi-threading to support the usage of multi-

core architectures for regression modeling and classification. 

Many different plugins are available for each of the different

sub-problems: model types (rational functions, Kriging [5] , splines,

Support Vector Machines (SVM) [6–8] , Artificial Neural Networks

(ANN), Extreme Learning Machines (ELM) [9] , Least Squares-SVM

(LS-SVM) [10] , Random Forests [11] ), hyperparameter optimization

algorithms (Particle Swarm Optimization [12] , Efficient Global Opti-

mization [13] , simulated annealing, Genetic Algorithm), sample se-

lection (random, error based, density based [14,15] , hybrid [16] ),

Design of Experiments (Latin Hypercube [17,18] , Box-Bhenken), and

sample evaluation methods (local, on a cluster or grid). The behav-

ior of each software component is configurable through a central

XML file and components can easily be added, removed or replaced

by custom implementation. 

During the adaptive modeling step, the Toolbox uses the fol-

lowing methodology for model selection to guide the hyperparam-

eter optimization: the quality of a model ˜ f θ parametrized by θ of

a dataset D is denoted as: 

�
(
ε, ˜ f θ , D 

)
. (1)

� denotes a quality estimator for model selection: the SUMO Tool-

box supports several algorithms such as a validation set, cross val-

idation, Akaike Information Criterion (AIC) [19] , SampleError, jack-
nife and LRM [2] . The quality estimator uses an error function ε:

opular choices are Root Mean Square Error (RMSE), Root Relative

quare Error (RRSE) for regression [20] , or the misclassification rate

or classification. 

The architecture for hyperparameter optimization of the Tool-

ox also allows optimization of the classifier parameters to im-

rove its position in the ROC space, a popular method to present

he accuracy of a classifier. This can be seen as a multi-objective

oal: minimizing the false positive rate and maximizing the true

ositive rate. Both rates can be determined by evaluation of a qual-

ty estimator. By combining these objectives into a single multi-
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bjective measure �, the hyperparameter step becomes a multi-

bjective optimization problem which is supported. This results

n a set of Pareto-optimal solutions representing the trade-off be-

ween both objectives, instead of a single optimal solution [21] . 

The SUMO Toolbox is free for academic use and is available for

ownload at http://sumo.intec.ugent.be . It can be installed on any

latform supported by MATLAB. In addition, a link can be found to

he available documentation and tutorials to install and configure

he Toolbox including some of its more advanced features. News

tems concerning new releases, additional features and updates can

lso be found at the same web page. 

. Sequential design 

This section describes the concept of sequential design, the de-

ault experimental design method of the Toolbox, and explains how

t differs from one-shot experimental design [2,14,15] methodol-

gy as used traditionally in the design and analysis of computer

xperiments. This methodology can be applied when the output

f the computer experiments is continuous (regression, as usually

ncountered in surrogate modeling) and for discrete outputs (clas-

ification) as described in this article. The usage of model in this

ection covers both the regression and classification interpretation,

nless specified otherwise. This section first reviews one-shot and

equential experimental design, and then lists some categories of

xisting methods for sequential design. 

.1. One-shot experimental design 

The selection of data points is of key importance when obtain-

ng the output is expensive. Each evaluation should reduce the

odel uncertainty as much as possible, and should contribute a

aximum amount of information. This information can be ob-

ained with a one-shot approach in which the data points are

efined by generating an experimental design based on a space-

lling criterion 

2 at once. Popular methods to generate these de-

igns are (maximin) Latin Hypercubes [17] and factorial designs

23] . All data points are evaluated and a model is trained and eval-

ated. Because no prior information is available on the behaviour

f the response surface it is hard to determine the size of a one-

hot design, which is their major downside. In case too few data

oints have been evaluated to obtain an accurate model ( under-

ampling ), the process has to be restarted. But the problem can

lso be easier than anticipated: evaluating more data points than

equired ( oversampling ) means wasting computational resources. 

.2. Sequential experimental design 

Sequential design turns this one-shot approach into an itera-

ive process [3,24] . The acquired data and the constructed models

rom previous iterations are analysed in order to intelligently select

ocations for new data points (sequential sampling). Next, the la-

els for these additional data points are obtained and new models

an be trained or existing models can be updated (in case online

earning methods are used to update existing models with addi-

ional data [25] ). First of all this means there is no risk of over- or

ndersampling as the process can be halted when the desired ac-

uracy is reached (or if the computational budget is exceeded). A

econd major advantage is that information provided by the con-

ecutive labels and intermediate models can guide the selection to

btain optimal locations for new data points. This allows the data

istribution to be adapted and refined to the problem at hand as
2 Other aspects of Design of Experiments (DoE) such as blocking, replication etc. 

ose their relevance within the context of computer experiments [22] . 

h  

q  

T  

(

ore knowledge becomes available, which means the sampling is

o longer only guided by space-fillingness. In surrogate modeling,

he concept of sequential design has been applied in several suc-

esful applications [24,26–30] . 

Experimental design with sequential sampling is related to the

eld of active learning [31–34] . Under its original formulation, ac-

ive learning picks some data points from a set of unlabeled can-

idate points for evaluation, after which one or multiple classifiers

re trained on the labeled instances. After a performance evalua-

ion, the process may be repeated to label more training instances

o improve the accuracy. Often, an active learning algorithm pro-

ides a ranking of possible data points [35] . However, over the

ears active learning has grown into a broad field which now in-

ludes intelligent selection of data points in a continuous space

which implies no predefined set of unlabeled data points is avail-

ble). Examples include an approach presented by [36] which se-

uentially learns a decision function, and optimal learning for in-

nitely many armed bandits problems [37] , in which the learner

an either sample an arm (or a distribution) that has been al-

eady been observed in the past, or sample a new arm with a

nown mean. There is a reward associated with each arm (each

otential sample), and the objective is to maximize the reward and

inimize the regret (expected difference between collected reward

nd the reward associated with the optimal arm). For an excellent

verview and mathematical treatment of sequential sampling tech-

iques in active learning, we refer to [38] . The setting considered

or sequential sampling in this paper involves sampling near the

oundaries of the different classes and balancing exploration and

xploitation. The notion of reward or regret is not considered in

his work. 

The typical modeling process with sequential design is illus-

rated in Fig. 3 : it is initiated by generating a small set of initial

ata points (referred to as initial design ) which are simulated. The

rocess then initiates a loop: a model is trained and its hyper-

arameters are optimized with respect to a pre-set quality crite-

ion (discussed in Section 2 ). When improvement can no longer

e realized and the quality of the model is not sufficient, the

equential sampling routine is started. Based on all available in-

ormation one or possibly more new data points are chosen by

his co-routine, of which the labels are acquired. When the labels

re available a new model is trained and optimized. This process

ontinues until the stopping criterion is satisfied: either the re-

ression model or classifier is sufficiently accurate, or the budget

onstraints (maximum number of evaluations or a time limit) are

eached. 

The sampling and modeling steps of the process are indepen-

ent (with the exception of modeling-based sampling strategies (

ection 4 ), which means construction of intermediate models is

ot an absolute requirement (it is possible to immediately select

ew samples after evaluation as represented by the dashed line in

ig. 3 ): possible scenarios include sequential selection and simula-

ion of samples and construction of a model only when the com-

utational budget is consumed, or selection of samples in batches

s opposed to one-by-one. 

Continuous outputs can be approximated with regression tech-

iques such as Kriging [5] , Artificial Neural Networks (ANN), Ra-

ial Basis Functions (RBF) etc. Sequential sampling algorithms typ-

cally discover “difficult” regions in the design space and sample

hem densely as these regions tend to result in high model un-

ertainty. For regression applications sequential design usually fo-

uses on regions of the design space that are undersampled and

here additional samples are needed to discover the response be-

aviour (input-based exploration), or highly non-linear regions re-

uiring additional information in order to be modeled accurately.

he latter requires knowledge on the responses of earlier samples

output-based exploitation). 

http://sumo.intec.ugent.be
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Fig. 3. A typical adaptive modeling flow with sequential design. After evaluating an initial set of samples an (intermediate) model is created and tuned. A feedback loop 

allows for the evaluation of additional samples to improve the quality of the model. When the sample selection strategy is not model-based, sample selection may also 

proceed without training the intermediate models each iteration as represented by the dashed arrow. 

Table 1 

Categorization of sequential designs. 

Input-based Output-based Model-based 

Low discrepancy sequences [48–50] Probability of Feasibility (PoF) [47] 

Sequentially nested Latin Hypercubes [17,51,52] (F)LOLA-Voronoi (regression) [16,53] Model error sampling (regression) [45] 

Monte-carlo/optimization based [14,15] Neighborhood-Voronoi (classification) [54] D- and G-optimal designs [55,56] 

Voronoi-based [16] Explicit Design Space Decomposition (EDSD) [46] 

Random Sequential Exploratory Experimental Design (SEED) [42] 
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When discrete outputs are encountered, techniques such as

Random Forests (RF) [11] , Support Vector Machines (SVM) [6–8] or

Naive Bayes [39] are used to classify the data points in the adap-

tive modeling step. For these problems, the model uncertainty is

usually situated in regions which have been undersampled (explo-

ration), or near the classification boundaries (exploitation). 

3.3. Existing sequential sampling methods 

An overview of some popular sequential sampling methods for

modeling of both regression and classification outputs is given in

Table 1 . The input-based sequential sampling methods usually fo-

cus on expanding one-shot designs (such as the nested Latin Hy-

percubes) or (Quasi-) Monte Carlo methods. It is also possible to

optimize space-filling criteria (for instance, maximin or minimax)

as in [15] . 

The output-based sequential sampling methods analyze the ob-

tained labels or output values in order to guide the selection of

new data points. They can pursue optima or focus on non-linear

areas. These methods are typically complemented with an input-

based method to ensure not too much focus is put on the exploita-

tion of the acquired knowledge. All listed algorithms include an

input-based component to ensure exploration as well, and are pop-

ular methods for building designs with several successful applica-

tions [24,29,30,40,41] . 

A third type of sequential sampling methods directly query the

intermediate models built during the adaptive modeling phase.

These methods can rely on the ability of some model types to ex-

plicitly indicate regions of high uncertainty (for example the pre-

diction variance of Kriging [5] , or the probabilistic SVM [8] ). It is

also possible to train several models and find the regions with

most disagreements ( query by committee methods [42–44] ). This

results in model-based sampling approaches. This type of methods,

however, creates a dependency between the sampling and mod-
ling steps (and often comes at a non-negligible extra computa-

ional cost). Some model-based sampling strategies are listed in

he third column. Model error sampling for instance, samples in

reas with most disagreements between the model and the ac-

ual outputs [45] . Model-based methods typically pursue a specific

oal: EDSD (Explicit Design Space Decomposition) [46] for instance

s a sequential design method for refining the class boundary of

n SVM model, whereas Probability of Feasibility [47] searches for

reas which exceed a certain threshold making them suitable for

ampling constrained areas. 

. Sequential sampling for classification 

We now review some aspects of sequential design for classi-

cation problems approximating a black-box simulator with dis-

rete outputs. Two sequential sampling approaches are described

n more detail: Neighborhood-Voronoi [54] (an output-based ap-

roach) and Probability of Feasibility [47] (a model-based ap-

roach). These methods are also applied to the test cases in

ection 5 . 

.1. Neighborhood-Voronoi 

By default, the SUMO Toolbox offers the earlier introduced

eighborhood-Voronoi (N-V) algorithm [54] for classification, a se-

uential sampling strategy combining exploration and exploitation

or the construction of accurate classifiers. This algorithm is a mod-

fication of the LOLA-Voronoi [16] sequential sampling algorithm

sed in surrogate modeling. The Neighborhood-Voronoi algorithm

s based on the Voronoi tesselation of the search space and focuses

n two distinct goals: 

• Discover the class regions: the input space should be explored

to find the (sub-)regions of the different classes. When noth-

ing is known about the problem at hand, the choice of new
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3 A short movie of the sequential selection of data points can be seen on https: 

//www.youtube.com/watch?v=EcvfbaSUMOw . 
data points should be influenced by the possible existence of

undiscovered regions. As iterations evolve and all (possibly dis-

connected) regions of all classes have at least one data sample

the exploration can be halted. Depending on the problem, this

knowledge may be available or not. 
• Refine the boundaries: when two or more distinct regions have

been identified, new data points should be chosen such that the

location of the boundary between the regions can be identified.

This exploitation component greatly enhances the accuracy of

the classifier. 

For each data point p r of a set of data samples P , the N-V al-

orithms first selects a set of nearby points N ( p r ) ⊂ P �p r known as

he neighborhood . The choice of neighbouring points is guided by

wo principles: the neighborhood should have a high cohesion (de-

ned as the average distance of the points in N ( p r ) and p r ) and low

dhesion (the average minimum distance of points in N ( p r ) from

ach other). Clearly, these two principles conflict as a higher cohe-

ion implies higher adhesion as well. When the size of the neigh-

orhood equals twice the dimensionality of the data samples, the

ptimal configuration is known as the cross-polytope . A candidate

eighborhood is first assigned a score which indicates how much

t resembles to a cross-polytope: 

 (N(p r )) = 

A (N(p r )) √ 

2 C(N(p r )) 
. (2)

o obtain the neighborhood score which is used to guide the

earch amongst all possible neighborhood candidates, R is divided

y C to prefer neighborhoods with low cohesion if two candi-

ates are found which resemble the cross-polytope configuration

qually: 

(N(p r )) = 

R (N(p r )) 

C(N(p r )) 
. (3) 

nce the neighborhood candidate with optimal S has been se-

ected, the labels of the points in N ( p r ) are compared: when no

isagreement is found the Voronoi cell defined by p r is considered

o contain no class boundary. The size of all Voronoi cells is com-

uted and serves as a basic score. If a disagreement is found in the

abels of the points in N ( p r ), the score is increased. New samples

re then selected within the Voronoi cells with highest score: this

ould be because a disagreement was found and the cell is large

ompared to other cells with disagreements ( exploitation ) or be-

ause the cell became very large compared to all other cells and

hould be sampled, even if a disagreement has not yet been found

 exploration ). A full description of the N-V algorithm can be found

n [54] . 

The N-V algorithm is an excellent choice for sequential selection

f data points. The method can define all data points upfront, inde-

endently of classifiers to be trained in a later step: N-V does not

uery the classifier for regions of uncertainty. The benefit of hav-

ng a sampling strategy independent from the intermediate classi-

ers is significant when only a small number of data points have

lready been evaluated: at this point the classifier is still unsta-

le because it lacks information which might influence the sam-

le selection undesirably. Furthermore the N-V algorithm automat-

cally balances exploration and exploitation which allows discov-

ry of previously undiscovered class regions. The latter property

istinguishes N-V from other methods such as EDSD [46] , which

ssumes the initial set of points finds all regions. A downside of

he N-V algorithm is its increasing computational complexity as

he dimensionality of the input space grows (similar to the prob-

ems encountered with the LOLA-Voronoi algorithm). However, this

ssue could be tackled by applying a faster method to select N ( p r ).

urrent research investigates the use of the strategy proposed in

53] for the N-V algorithm. 
.2. Probability of Feasibility 

A model-based method for sequential design is the Probability

f Feasibility (PoF) [47] . This criterion picks new data points in un-

erexplored areas which have a high probability of remaining be-

ow a certain threshold g min . Formally this denoted as 

 (F (x ) < g min ) = �

(
g min − ˜ f (x ) 

˜ s (x ) 

)
. (4)

he PoF is typically used with Kriging or Gaussian process mod-

ls, represented by random variable F ( x ), with prediction mean f̃ 

nd variance ˜ s . The function � corresponds to the cumulative den-

ity function of the standard normal distribution. For classification

roblems, the PoF can be interpreted as the probability estimate of

 probabilistic classifier. be used in combination with probabilistic

lassification models such as the probabilistic SVM. This approach

s very suitable for modeling constraints when the output of the

onstraints is discrete (feasible/infeasible). 

. Test cases 

.1. Stanford Bunny 

In this illustration, a classifier is trained for the Stanford Bunny

D model [57] consisting of 69451 polygons. The input space is

hree-dimensional ( x , y , z coordinates) and the output is binary: a

ero indicates the point is outside of the model, a one indicates

he point is inside. The resulting class boundary is the contour of

he object. In fact, checking if a point is inside or outside of an ob-

ect is not a very computationally complex task: in this article it is

nly used to illustrate the capabilities of the sequential approach,

s well as the Toolbox. 

The Toolbox was configured with an initial Latin Hypercube

enerated by the Translational Propagation algorithm [18] (50

oints). Each iteration of the sequential design, 10 additional points

ere selected by the Neighborhood-Voronoi algorithm. The pro-

ess was terminated when 10 0 0 samples were evaluated. Given the

hape of the 3D object, this is quite a sparse data set (the size cor-

esponds to a 10 × 10 × 10 grid). The growth and evolution of the

ataset 3 is illustrated in Fig. 4 . 

For each iteration, several classifier types (SVM, ANN, Ran-

om Forests and Naive Bayes) were trained concurrently in sev-

ral threads to evaluate the performance of each classifier for this

pplication. For the SVM, the DIRECT algorithm [58] was used

o optimize the kernel parameter (RBF kernel) and the regular-

zation parameter. For ANN, a Genetic Algorithm (10 generations

f 15 individuals) was used to optimize the network architec-

ure and initial weights. Each individual network was trained with

evenberg-Marquard backpropagation with Bayesian regularization 

300 epochs) [59] . Random Forest (fixed number of 500 trees) and

aive Bayes had no parameters to be optimized. 

For hyperparameter optimization, 5-fold crossvalidation was 

sed as performance measure. In addition, the classifiers were also

alidated on a dense validation set to estimate their true error.

 common problem specific to quality estimation of classifiers is

aused by class imbalance . If a class is underrepresented, a straight-

orward error function such as the miss-classification rate will fa-

or classifiers discriminating the minority class, because the la-

els of the majority class are mostly predicted correctly. In ex-

reme cases, the minority classes will be completely ignored. To

void this, the geometric average of the precision and recall of both

lasses (out, in), represented by p out , p and r out , r respectively,

https://www.youtube.com/watch?v=EcvfbaSUMOw
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Fig. 4. Stanford Bunny: evolution of the samples used to train the classifiers at 250, 500, 750 and 10 0 0 samples in figures (a), (b), (c) and (d) respectively. Blue dots are 

inside the 3D object, red crosses are outside. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5. Stanford Bunny: the evolution of the geometric mean of the precision and 

recall of both classes on the validation set for all classifier types as more samples 

are evaluated (up to 10 0 0). 
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is used as error function for this experiment: 

G = 

4 
√ 

p out p in r out r in . (5)

Let A denote the set of data points with label A, and Pr( A ) the set

of data points labeled A by the classifier. We define the set of true

positives as TPF (A ) = A ∩ Pr (A ) . The recall of the classifier for the

class A is the ratio of true positives and the number of data points

with label A: 

p A = 

| TPF (A ) | 
| A | , (6)

whereas the precision of A is defined as the ratio of the true posi-

tives and the number of predicted cases of A: 

r A = 

| TPF (A ) | 
| Pr (A ) | . (7)

A score of G = 1 represents a perfect classifier as it implies all pre-

cision and recall terms have a value of 1. This means the classifier

labels all data points correctly, a score of G = 0 represents a miss-

classification of every data point [60] . 

Fig. 5 shows the obtained G-score on the validation set as more

samples are evaluated, and classifiers are retrained. The classi-

fier accuracy improves as the number of samples increases for all

methods included in this illustration: RF, SVM and ANN are per-

forming very similar, but SVM always seem to be slightly better.

The results for the ANN show most fluctuation: closer inspection

reveals the optimization of the network architecture sometimes

gets stuck in a solution which scores well for crossvalidation, but

performs worse on the validation set: when new data points are

added, the crossvalidation score drops and the network architec-

ture needs to be altered. This causes the bumpy behaviour of the

ANN performance. Naive Bayes clearly is not suited to model the

boundary of the 3D model: its score G score is stuck around 0.6

and is barely increasing as additional data points are added. Of all

methods it performs worst. 

Considering G = 0 . 9 corresponds to a very satisfying classifier

for this application, SVM obtains the score after 200 evaluated
amples. In comparison, an SVM trained on a one-shot maximin

atin Hypercube of 200 points generated by the Translational Prop-

gation algorithm [18] obtains a score of only G = 0 . 85 . The final

est SVM Model was evaluated on a dense grid and the obtained

abels were used to generate an iso-surface of the Stanford Bunny

hich is shown in Fig. 6 . 

.2. Bended microstrip 

This section describes the use of adaptive classification in the

eld of ElectroMagnetic Compatibility (EMC) [54] : the near-field

NF) pattern of a double bended microstrip line that was measured

sing a scanning system as illustrated in Fig. 7 . The printed circuit

oard (PCB) comprises a microstrip on a substrate. The microstrip

as excited with a generator set and the amplitude of a field com-
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Fig. 6. Stanford Bunny: a grid of 10 7 points was classified by the final SVM model of the Bunny based on 10 0 0 data samples. Iso-surface techniques were used to plot a 

volume using the resulting labels. Clearly, the SVM manages to fit the contour of the model very accurately. 

Fig. 7. Bended microstrip: near-field scanner setup. 

Table 2 

Bended microstrip: partitioning of the NF 

range in three different classes. 

Class label NF range (dB μ V) Color 

Low [0 – 30] Blue 

Elevated [30 – 35] Green 

High [35 – inf [ Red 
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Fig. 8. Bended microstrip: contour plot of the final SVM classifier based on 264 

measurements (dots). The colors of the classes correspond to the last column in 

Table 2 . The focus of the sampling algorithm is on the class boundaries near the 

hotspot region. 
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onent, e.g. | H y |, was measured with an NF scanner of which the

ead can be moved automatically in two dimensions at a fixed

eight of 2 mm above the Device Under Test (DUT) to perform

he measurements. 

The NF pattern is a continuous output, however we would like

o identify radiation hotspots, regions with elevated radiation, and

reas with low radiation near the board. Table 2 indicates how

he output range was mapped onto these three labels. A small

atin Hypercube design of 30 points generated by the Translational

ropagation algorithm [18] was used as initial design. The input

pace consists of the the ( x , y )-coordinate on the PCB. Each iter-

tion the Neighborhood-Voronoi algorithm selects a new sample.

fter evaluation, an SVM classifier (RBF kernel) with two parame-

ers (kernel bandwidth and regularization parameter) optimized by

he DIRECT algorithm [58] was trained on the dataset, the perfor-

ance of the classifiers was estimated by crossvalidation. A simple

rror function such as the miss-classification rate results in a pre-

ature end of the process due to class imbalance. To counter this

ssue, the geometric average of precision and recall for all three

lasses was used. 

When 264 measurements were evaluated, the desired accuracy

f G = 0 . 90 (a score of 1 represents a perfect classifier with per-

ect precision and recall for all classes) was obtained and the pro-

ess was halted. Fig. 8 shows a plot of the distribution of labels of

he final classifier, and all measurements as chosen by the sequen-

ial design strategy. A strong focus is on the region containing the

otspot: it is surrounded by a thin region with elevated radiation

hich requires high sampling density to obtain sufficient infor-

ation on the class boundaries. This concentration effect did not
ause the central region to be oversampled. The exploration part

f Neighborhood-Voronoi has explored the design space to avoid

issing out a class region: if any region was missed it is no larger

han the size of the largest Voronoi cell. 

.3. Cyclone optimization 

The adaptive classification strategy can also be used to model

omputationally expensive black-box constraints in optimization

roblems. In this section a 7D constrained Computational Fluid Dy-

amics (CFD) design problem is studied. Multi-objective surrogate

ased (Bayesian) optimization (MOSBO) [61] is used to find Pareto-

ptimal solutions. Gas cyclones are widely used in air pollution

ontrol, gas-solid separation for aerosol sampling and industrial

pplications when large particles are to be caught. In cyclone sep-

rators ( Fig. 9 ), a strongly swirling turbulent flow is used to sepa-

ate phases with different densities. A tangential inlet generates a

omplex swirling motion of the gas stream, which forces particles

oward the outer wall where they spiral in the downward direc-

ion. Eventually the particles are collected in the dustbin (or flow

ut through a dipleg) located at the bottom of the conical section

f the cyclone body. The cleaned gas leaves through the exit pipe

t the top. The cyclone geometry [62] is described by seven geo-

etrical parameters: the inlet height a , width b , the vortex finder

iameter D x , and length S , cylinder height h , cyclone total height

 t and cone-tip diameter B c . Modifying these parameters has an

mpact on the gas cyclone itself. Two aspects of the cyclone must

e optimized: the pressure loss (represented by the Euler number)

nd the cut-off diameter. The latter is represented by the Stokes
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Fig. 9. Cyclone: illustration of a cyclone separator. 
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Fig. 10. Cyclone: scores for all 120 evaluated samples for the multi-objective cy- 

clone optimization problem. Pareto front points that satisfy the constraints are 
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straints. Black-points are not Pareto optimal, but satisfy the constraints whereas 

blue crosses are invalid. For comparison, we included the Pareto front obtained by 

applying NSGA-II on the simulator for 10 0 0 0 evaluations. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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StK = 

t r u 

l 
, (8)

with t r representing the particle relaxation time, u the velocity of

the fluid away from the obstacle, and l the diameter of the obsta-

cle. The particle relaxation time corresponds to the time constant

of the exponential decay of its velocity due to drag. 

In addition to both objectives, evaluating the simulator also

yields four binary values representing black-box constraints. Each

constraint corresponds to internal checks regarding the feasibility

of the configuration specified by the user. As each evaluation is

computationally demanding this additional knowledge should be

included in order to maximize the probability of selecting feasi-

ble solutions. Therefore, the constraints should be modeled and in-

cluded in the optimization process. As the output of the constraints

in this example is discrete (feasible/infeasible), we could map both

classes to a number (0/1) and apply regression and Probability

of Feasibility. However this would essentially be a non-stationary

problem (the smoothness of the response surface varies greatly at

the boundary) which can lead to problems with Gaussian process

and Kriging models [63] . Instead using a probabilistic classification

algorithm, we can model the discrete constraint responses and still

use the PoF criterion. 

To handle this complex 7D multi-objective constrained design

problem, the SUMO Toolbox is configured to model the Euler and

Stokes objectives with Least-Squares-SVM (LS-SVM) [10] . The hy-

perparameters (RBF kernel bandwidth and regularization parame-

ter) are optimized with the DIRECT algorithm [58] . The sequential

design strategy is a combination of two criteria: the Hypervolume

Probability of Improvement (HvPoI) [61] , a sequential sampling cri-

terion for regression to guide the multi-objective optimization and

the Probability of Feasibility (PoF) [47] to guide the optimization

towards feasible regions. The combined criterion becomes 

γ (x ) = HvPoI (x ) PoF (x ) . (9)

The next data point for evaluation is selected by optimizing γ nu-

merically. 

To compute the PoF, each constraint is modeled with a prob-

abilistic SVM (RBF Kernel) optimized with the DIRECT algorithm

[58] . The quality of the constraint models is assessed by cross-

validation, with the F 1 -score of the positive class used as error

function. The constraints are modeled using the same samples

used for training of the surrogate model for the optimization: as

the process evolves, the optimization learns the feasibility of the

current samples. Inevitably, some samples that violate the con-

straints will be evaluated while the process evolves. The initial de-

sign is a Latin Hypercube of 50 points generated by the Transla-
ional Propagation algorithm [18] . Each iteration 5 samples are se-

ected by the sequential design strategy until the sample budget is

onsumed (120 samples in total). 

Fig. 10 shows the scores for all evaluated samples for both ob-

ectives. The red and green samples form the Pareto front. As the

onstraints were black-box and were learned throughout the pro-

ess, many samples have been evaluated that do not satisfy the

onstraints (as these were not known at that time): only 8% of

ll 120 samples satisfy the constraints. Fortunately, 4 of them are

areto optimal and represent valid optimal configurations. The ex-

ct optimal Pareto front is unknown, however in order to provide

 comparison NSGA-II [64] was applied directly on the CFD simu-

ations for a total of 10,0 0 0 evaluations: the results are shown in

ig. 10 . It is clear that the Pareto optimal solutions found by our

pproach form a similar front to the front found by NSGA-II, how-

ver our approach was able to identify these solutions with sig-

ificantly fewer evaluations. Hence the Pareto front of Fig. 10 is a

ery good approximation given the budget constraint of 120 eval-

ations. 

. Conclusion 

The SUMO Toolbox, a state-of-the-art MATLAB Toolbox devel-

ped for surrogate modeling with sequential design has recently

een extended to support adaptive training of classifiers, next to its

ide variety of regression models. This paper illustrates how the

UMO Toolbox can be applied to efficiently solve computational

xpensive design applications involving classification and optimiza-

ion problems. 

By default, the Toolbox uses the sequential design methodology.

e discussed the applicability to classification problems with la-

els resulting from expensive computer experiments. Sequentially,

ew data samples can be selected to improve the accuracy of the

lassifier. These new samples are chosen based on what is already

nown about the application at that point (intermediate classifier,

btained labels, space-fillingness, etc.). 

Improving the sequential sampling algorithms for classifica-

ion problems (including incorporating existing methodologies

rom active learning) is subject of further work. In this article,

eighborhood-Voronoi and Probability of Feasibility are two strate-

ies used for sequential sampling of the class boundaries, both are
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vailable in the SUMO Toolbox. We highlighted the benefits of the

eighborhood-Voronoi approach, but depending on the classifier

nd the problem at hand (constraints in optimization, global ac-

urate classifier, etc.) more optimal strategies can be developed. 
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