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Abstract—Constructing surrogate models of high-dimensional
complex black-box systems from simulation-based data requires
an appropriate choice of surrogate model type, as well as iden-
tification of the most influential input parameters. As including
irrelevant input parameters results in a longer surrogate model
training process and potentially increases the risk of overfitting, it
is important to identify a small set of relevant parameters during
the adaptive modeling phase of the surrogate modeling process.
A multi-objective optimization step is proposed to identify both
the appropriate model type as well as a parameters subset. The
obtained model can be used for evaluation intensive applications
such as exploration, sensitivity analysis or optimization.

I. INTRODUCTION

Confronted with high-fidelity simulation codes approximat-
ing complex systems to avoid countless (expensive) prototypes
during product design, engineers nowadays approximate the
simulator response with cheap-to-evaluate surrogate models
(also known as response surface models or meta-models) [1].
These surrogate models are constructed by selecting a set of

input values for the simulator and computing the responses.
The surrogate models then learns the relation between the
inputs and the simulator output and can be used to replace the
simulator for applications requiring many evaluations such as
domain exploration, sensitivity analysis, or (multi-objective)
optimization of the underlying complex system it approximates.

Several types of regression techniques are typically used as
surrogate models including Artificial Neural Networks (ANN)
[2], Kriging [3], Radial Basis Functions (RBF), Support Vector
Machines (SVM) [4], [5], [6], Least-Squares Support Vector
Machines (LS-SVM) [7], Extreme Learning Machines (ELM)
[8], [9], Splines, Rational interpolation [10], etc. The most

suitable model type depends on the properties of the response
surface of the simulator [11]. For example, Kriging usually
performs well for smooth responses, whereas ANN models are
able to capture strong non-linear output behaviour.

The number of samples is kept small as each additional
simulator evaluation is very expensive in terms of computing
time. This implies each sample should contribute a maximal
amount of information to improve the accuracy of the surrogate
model. The set of samples can be chosen at once (one-shot
design): all input combinations are chosen, simulated and

Fig. 1. Schematic illustration of the surrogate modeling process with sequential
design.

a model is trained. As it is difficult to decide how much
samples are needed for an accurate surrogate model upfront,
this approach involves a risk of evaluating too few or too
many samples. To avoid this, sequential design has become
a popular method [12]. At the start of the process a small
set of data points is evaluated and followed by the adaptive
modeling step to create an intermediate model. The parameters
of the models (hyperparameters) are optimized automatically
with respect to a quality estimator specified upfront. Next, an
adaptive sampling algorithm such as FLOLA-Voronoi [13], [14]

,Efficient Global Optimization (EGO) [15], or Efficient Multi-
objective Optimization (EMO) [16] selects new data points
(possibly based on knowledge obtained during the evaluation
and modeling phase). After evaluation these samples are added
to the data set and the adaptive modeling step is repeated to
create an updated intermediate model. This process continues

iteratively until the modeling goals have been met, or any
limitation is reached (maximum number of data points, or a
time-limit). The process of surrogate modeling with sequential
design is illustrated in Fig. 1.

An important aspect of surrogate modeling is the assumption
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of a black-box simulator. No a priori information is available

on the response behaviour of the simulator: all information
is learned from the simulator evaluations. This restriction has
two important consequences:

● Picking the optimal surrogate model type is difficult.
Especially when only a small number of data points is
available (as is often the case for sequential design) it is
difficult to estimate the properties of the response surface,
and choose the appropriate model type. Often this is
guessed based on earlier experiments or experience of
the product designers. Earlier, an evolutionary method
for model type selection during adaptive modeling was
introduced to automate this choice [17].

● Because the relation between the input and output is
unknown, some input parameters may influence the
output more than others. In fact, some parameters can

even be irrelevant. Including these parameters within the
modeling potentially makes modeling results worse, as
overfitting may occur. This is one of the motivations
for feature selection techniques in the field of machine
learning. Therefore automatic identification of the most
significant parameters during the adaptive modeling step
can significantly enhance the model quality for high-
dimensional surrogate modeling problems.

This paper presents an automatic optimization procedure
which aims to find both the optimal subset of input parameters
and the ideal surrogate modeling type by considering the model
selection criterion as a multi-objective optimization problem. It

is an extension of earlier work on automatic surrogate model
type selection presented in [17], as well as principles presented
in [18]. Section II introduces the idea of adaptive global
surrogate modeling formally. An overview of the motivation
and brief overview of the three main types of feature selection
is given in Section III. The proposed approach based on multi-

objective optimization is given in Section IV, and illustrated
on a 30-dimensional example in Section V.

II. ADAPTIVE GLOBAL SURROGATE MODELING

The process of constructing a surrogate model can be
mathematically expressed as follows: given an unknown
function f ∶ Ω → C

p defined over the input domain Ω ⊂ R
d,

whose function values Y = {f(x1), ..., f(xN)} are known for
a set of distinct query points X = {x1, ...,xN}. Together, they
form the data set D = {(x1, f(x1)), ...(xN , f(xN))} ⊂ R

d.
A suitable function f̃ from an approximation space S with

f̃ ∶ Ω → C
p ∈ S has to be chosen based on some criterion ξ.

This criterion consists of 3 different aspects:

ξ = (Λ, ε, τ) (1)

Given ε ∈ E, an error function from the set of error functions
and τ the target error specified by the user, Λ is a quality
estimator with Λ ∶ E ×S ×P(Ω) → R

+ (usually higher quality

means lower errors), and τ the target error specified by the

user. Finding the optimal approximation function f̃∗ ∈ S can

now be expressed as

argmin
t∈T

argmin
θ∈Θ

Λ(ε, f̃t,θ,D)
subject to Λ(ε, f̃t,θ,D) ≤ τ.

(2)

with f̃t,θ the surrogate model of type t with model parameters
θ (from a parameter space Θ, specific for each surrogate model
type).

The first minimization handles the model type selection
aspect of the surrogate modeling process, whereas the second

optimization problem tunes the hyperparameters of the model
to find an optimum of the model quality estimator Λ. The
choice of Λ is therefore crucial to obtain a satisfying surrogate
model at the end of the process. Consulting the users of the
surrogate model and defining what is expected from the model
and what is not, is a good starting point. These requirements

can be formally translated into a good quality estimator.
A straightforward approach is minimizing the error between

the surrogate modeling response and the true responses Y
for the training input data X . This is often referred to as
training error or sample error and pushes the hyperparameter
optimization to models interpolating the data points perfectly.
This rarely provides a satisfying model as the optimization
problems do not consider model quality in Ω ∖ X , which
will lead to very unreliable responses when new data points

x ∉X are to be predicted (poor generalization performance).
A popular method to enhance generalization performance is
crossvalidation. Other model quality estimators include Akaike
Information Criterion (AIC) [19], Linear Reference Model
(LRM) [12], jack-knife, Validation sets, etc. Λ may also be

composed as linear combination of several quality estimators,
or the optimization problem of Equation 2 can be optimized
multi-objectively [20]. For the latter case not a single f̃∗ ∈ S is
found, but a pareto-optimal set P ⊂ S representing the trade-off
between the quality estimators.

III. FEATURE SELECTION

Traditionally, adaptive surrogate modeling includes all d-
dimensions of the input space Ω in the process. When the
dimensionality of the input space grows, the process becomes
more difficult as several issues start to occur. Training some

model types for high-dimensional problems is infeasible: for
instance Kriging with the anisotropic Gaussian correlation
function has a hyperparameter for each dimension which
needs to be optimized, which turns the inner optimization
of Equation 2 into a complex high-dimensional optimization
problem. Furthermore, the size of the input space grows
exponentially in terms of d: this implies more data points
are required to capture all dynamics of the response surface,
and to reduce the uncertainty of the model. For the Hölder
class of functions the lower bound on the error τ was formally
proven [21]:

τ ≥ cN−
k+α
d ,

for a constant c, and parameters k and α representing the

smoothness of the function. While not completely representative
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of the surrogate modeling scenario, it does give a (intuitive)

hint to the scalability issues associated with it. If the function

is more smooth, the lower bound for the error drops faster as
more samples are evaluated, whereas increasing dimensionality

makes the drop less significant. Evaluating the simulator for

many data points is already a computationally demanding step,

but it also increases the computational burden of model training.
Fortunately, usually only a few input parameters have a

significant influence on the response behaviour of the simulator.

Other parameters only contribute very little, or are completely

irrelevant. Automatically identifying the group of relevant

features is referred to as Feature Selection and aims to achieve
3 goals [22], [23]:

● Simpler models are easier to interpret and provide useful

information on the parameter relevance.
● Shorter model training time.

● Improve generalization by reducing overfitting risk: includ-
ing irrelevant parameters in the model training increases

the risk of overfitting, especially when only a relatively

small amount of data is available with respect to the
dimensionality.

Three flavours of feature selection methods exist: filter only

analyses the data set D, and does not require any type of

models. Wrapper methods build a model of the data and

analyse it to identify feature relevance. Embedded methods

handle the feature selection during the training phase of the

model. As small data sets are usually encountered (especially
in the context of sequential design) it may be dangerous to

apply filter methods as not all information is available (yet).

Furthermore, the overfitting risk due to the small number of

observations in combination with the dimensionality of the

input space may influence the result. Instead, we propose to

build many models (of different types) during the adaptive

modeling phase, on different subsets of input variables. By

incorporating the feature selection into the adaptive modeling

phase of the surrogate modeling process, information on the

model performance can be used to guide the selection process

and find an optimal input-subspace. More specifically, this paper
introduces an approach by incorporating feature selection into

the model quality estimator. This optimization is driven by a

multi-objective Genetic Algorithm (GA), similar to approaches

suggested in [24], [25]. This means the proposed approach is

mostly a wrapper method.

IV. PROPOSED MULTI-OBJECTIVE SEARCH STRATEGY

To incorporate feature selection as a part of the surrogate

modeling process, the model quality estimator Λ is expanded to

penalize complex models, in addition to a component recording
the model error the function outputs a complexity objective.

Formally this extended model quality estimator can be written

as

Λ̃ ∶ E × S⋆ × P(Ω⋆) → (R+,R+)
(ε, f̃λ,θ,Dz) ↦ (Λ(ε, f̃λ,θ,Dz),C(f̃λ,θ)) . (3)

The approximation function now has a parameter λ = (t, z),
with z a vector defining the included input variables. Therefore,
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Fig. 2. Overview of the two-layered adaptive modeling process.

Dz is a lower-dimensional subspace of D spanned by the

variables in z. Because of this projection f̃ is taken from a

different approximation space S⋆ and f̃λ,θ ∶ Ω⋆ → C
p with

Ω⋆ ⊂ R
#z ⊂ R

d. Note that under this formulation the quality

estimator Λ corresponds to the description in Section II, but its

domain now equals E ×S⋆ ×P(Ω⋆). By expressing the model

complexity in terms of the number of input parameters, multi-
objective optimization of Equation 2 involving this formulation

of the model quality estimator now also involves searching for

a (preferably small) subset of the d input parameters which
results in good modeling performance. This implies irrelevant

features are excluded from models as they do not enhance

accuracy, but result in higher complexity scores. The result of
the optimization is a set of pareto-optimal solutions ranging

from models including too few parameters (underfitting), to

models including all parameters possibly overfitting the data.

A. Finding pareto-optimal models

A genetic algorithm supporting multi-objective optimization

such as NSGA-II [26] can be used to obtain P . Each individual

of a population individual is represented by the vector λ ∈ Rd+1

containing the surrogate model type, as well as the dimensions

included by the model. To avoid varying vector dimensions,

the dimensions in z are represented in λ by a binary vector

of size d. In a second phase, the individuals of a population

are trained on their assigned Dz , and automatic optimization

of the hyperparameters θ is performed using a method which
is usually specific for the model type t. Usually the method

searches optimal θ in terms of enhancing model accuracy. The

model quality estimator used during the optimization of θ
can differ from Λ. As the model complexity remains constant
during the hyperparameter optimization (the input variables

do not change) so this objective is not considered during this
phase. Only the model accuracy objective(s) are used. It makes

sense to use the same accuracy objective(s), but this is not

a strict requirement. For instance, model hyperparameters θ
can be optimized with crossvalidation whereas the score on a

validation set can be used as accuracy objective in the multi-

objective optimization of λ.
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After the models have been trained and optimal θ have been

found, the model quality of the individuals are estimated with

Λ̃. Fig. 2 presents an overview of this two-layered adaptive

modeling step: the optimization of the hyperparameters θ
does not occur at the level of the multi-objective optimization

of λ. Because the hyperparameter space Θ is different for

each surrogate model type, including the hyperparameters

makes implementing a crossover and mutation operations less
straightforward. Furthermore, adding θ to λ may significantly

enlarge the search space and can result in good combinations
of features resulting in poor model accuracy if the choice

of θ is bad. When this individual is eliminated, it may take

a few generations for this feature combination to re-appear.

In addition, we find no evidence in literature that a different

choice of model hyperparameters influences input parameter

relevance (with respect to the complex system). Note that this

selection approach differs from the island-based approach used

earlier [17].

Unless the last generation has been generated and evaluated,

the algorithm generates a new generation of models by
performing a selection of the model individuals of the current

generation to generate offspring. The selected models are given

as input to a crossover and mutation operator. The crossover is

defined to randomly pick one of the model types of the parents

and takes a random subset of the union of the parameters of the

parents. The mutation operator can randomly decide to change

the model type, or randomly include or exclude a dimension.
Some additional properties of these operations are discussed

in the following sections. A schematic outline of the proposed

adaptive modeling step for surrogate modeling with sequential
design and automated feature selection is presented in Fig. 3.

B. Ensemble building

Ensemble models aggregate several f̃ and combine the

outputs. Usually the models included in the ensemble each

solve simpler subproblems, and the combination of all the

subproblems results in an accurate solution to the initial

problem. The most popular example of ensemble methods

is Random Forests [27], which is essentially an ensemble of

decision trees and can be used both for classification and

regression problems.

With a small modification we can include ensemble individ-

uals of the form

f̃∗ens,θ(x) =
l∑

i=1

θif̃λi,θ̄i(x). (4)

These linear combinations of surrogate models can be produced

by the crossover operator with a small probability. Instead of

choosing the model type of one of the parents (the standard

behaviour of the crossover operator) the parents are grouped
together. If one (or both) parents are ensembles, the child is

an ensemble itself, including all models of the parents. For

both cases, z is the union of the dimensions of the parents.
The weight of the included models are the hyperparameters of

ensemble models, whereas the hyperparameters of the includes

models (denoted as θ̄i) were the optimal hyperparameters found

Initial popu-
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Train all
invididuals
(Optimize θ)

Score individ-
uals (using Λ̃)

Final generation?

Stopping criteria
reached?

Adaptive
sampling

Stop

Individual
selection
(using Λ)

Crossover

Mutation

New population

Yes

No

No
Yes

Offspring generation

Adaptive modeling

Fig. 3. Overview of the proposed adaptive modeling step with automated
feature selection and sequential design.

in the previous generation(s). When an ensemble model is

chosen for mutation, the mutation operator randomly eliminates

one of the contained models. If this implies the new ensemble
contains only one model, the model itself becomes the child

and the ensemble disappears.

As the individual models within the ensemble are not

necessarily constructed using the same subspace, this means
problems of higher dimensionality can be decomposed into

model problems of a smaller dimensionality. This idea is closely

related to HDMR [28], more specifically to recent work using

surrogate models instead of polynomials [29].

C. Complexity objective

The complexity objective (denoted as C) of Λ̃ penalizes

models with many parameters to promote finding an optimal

subset of input variables. It can therefore be defined as C(f̃λ) =
#z.

Although this definition results in feature selection, the

complexity objective can also be used to further influence the
model type-selection process. For example, an Ensemble of 2

SVM models, built on parameter i and j is less straightforward

compared to an SVM of parameters i and j. Also the number of

hyperparameters can play a role as this influences the associated

cost of optimizing them. Building an SVM on a subset of 6

parameters is a lot cheaper as only the kernel bandwidth and
the cost parameter need to be optimized. If instead, a Kriging
model using the anisotropic Gaussian correlation function is

to be built, 6 individual parameters need to be optimized.

Including this information into C can steer the optimization
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procedure to prefer easier models, and avoid many individual

that require intensive training.

Table I shows the definition of C for the model types as
used in the experiment of this paper. The definition was chosen
manually by the authors, reflecting the time required to train
and optimize each model type. Model types that are fast to train
and do not result in a complex hyperparameter optimization
problem are preferred whereas model types that do not offer

these advantages will only survive selection if they significantly
improve modeling accuracy. This formulation of the complexity
also implies cheaper model types will influence the populations
significantly in terms of feature relevance and can be considered
as worker models: even though they may not be extremely
accurate they will be preferred over complex models and cause

removal of irrelevant features early during the process due
to the selection. These feature subsets will also be used to
determine the input parameters used to train more complex
models through crossover and mutation. It is then up to these
model types to improve the accuracy significantly to account

for their expensive training.

D. Constraints to avoid infeasible models

Although C favours models with less complexity, this does
not imply the crossover and mutation will never produce indi-
viduals higher complexity. For large datasets, this potentially
results in very intensive model training procedures. For instance,
optimizing the hyperparameters of Kriging becomes infeasible

when many input parameters are included and an inproper
correlation function is used. When D grows large during
sequential design, some model types may also be inappropriate
and require a lot of memory to complete the training phase.
These types of constraints on the individuals must be included
in the crossover and mutation functions to assure the generation

of new populations is restricted to feasible individuals.

V. EXPERIMENT

A. Implementation and setup

The proposed methodology was implemented in the SUr-
rogate MOdeling (SUMO) Toolbox [30], a state-of-the-art
research platform supporting both sequential design, one-
shot design, and multi-objective hyperparameter optimization.
Several surrogate model types (such as SVM [5], LS-SVM
[7], ELM [8], [9], ANN, Kriging [3], Gaussian Procceses [31],
Rational interpolation [10], splines etc.) and hyperparameter
optimization algorithms (Particle Swarm Optimization [32],
Genetic Algorithms, DIRECT [33], Simulated Annealing,
Pattern Search [34] etc.) are available. The toolbox is designed
according to a micro-kernel architecture, and is configured
through a central XML file. Because of this, a lot of the
building blocks required to implement the proposed strategy

were available.

As test problem, the 30-dimensional function defined in [35]

was chosen. It is defined as

f (x) = α∑k1

i=1 (xi + β∑k1

i<j=2 xixj) with

α = √
12 −√0.1(k1 − 1)

β = 12
√
0.1(k1 − 1).

For this experiment, k1 = 10 which includes x1, ...x10, whereas
all other parameters do not influence the response. Sequential
design is used to find a surrogate model which approximates
this function. The initial design consisted of 50 points, chosen
randomly in the input space. More sophisticated schemes such
as maximin Latin Hypercubes [36] are difficult to generate
for this kind of high-dimensional space. Each iteration, the

FLOLA-Voronoi [14] sampling algorithm was used to select
25 additional data points. This process continues until a total
of 250 data points have been evaluated.

The proposed multi-objective optimization for automated
selection of model type and optimal set of input parameters

was used to build the intermediate models. In the experiment
four different model types were included. The multi-objective
quality estimator as introduced in Equation 3 was composed as
follows: for the complexity objective values were assigned
as defined in Table I. The scores were chosen manually,
corresponding to the computational demands of training an
individual of a model type (considering the time required
to optimize its hyperparameters). To estimate the error (and
assess the accuracy) of a model both during the hyperparameter
optimization of each individual (with varying model type) as
well in the multi-objective optimization, 5-fold crossvalidation

was applied using the Root Relative Square Error error function:

RRSE(x, x̃) =
����∑N

i=1 (xi − x̃i)2
∑N

i=1 (xi − x̄)2 . (5)

For the GA performing the multi-objective optimization (λ),
the population size was configured to 15 individuals. Each time
the GA is called (i.e., once each iteration of the sequential
design) 10 generations are generated, of which all individuals

are trained and optimized. The crossover fraction was set to 0.7,
and the probability of generating an ensemble in the crossover
operation was 0.1. The initial population corresponds to the
final generation obtained in the previous sequential design
iteration, or is random when the modeling step is executed the
first time.

Each model individual has its hyperparameters optimized
using a specific algorithm based on its characteristics and
parameters (θ). The LS-SVM and SVM models have two
hyperparameters (kernel bandwidth and regularization parame-
ter) which were optimized using the DIRECT [33] algorithm.

Instead of traditional Artificial Neural Networks trained with
backpropagation the ELM model type was included. Hyperpa-
rameter optimization of ANN would include the optimization
of the network architecture with a genetic algorithm, which is
a computationally demanding step especially in combination
with crossvalidation. ELM are faster to train and consist of a

single layer. As hyperparameters, the number of neurons in
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TABLE I
OVERVIEW OF THE INCLUDED MODEL TYPES, THEIR HYPERPARAMETERS AND OPTIMIZATION STRATEGY

Surrogate model type C Parameters θ Optimizer

SVM #z + 0.5 Kernel bandwidth, DIRECT

Regularization constant

LS-SVM #z Kernel bandwidth, DIRECT

Regularization constant

Kriging 2#z Kernel parameter Maximum Likelihood Estimation

ELM 2#z Number of hidden neurons, Simulated

Regularization constant, Annealing

random number distribution width

Ensemble ∑i C (f̃i) Model weights Pattern Search

the hidden layer, the regularization constant, and the range of

the distribution used for the generation of the input weights

were optimized using Simulated Annealing. The last model

type included is Kriging, which uses Maximum Likelihood

Estimation to determine its hyperparameters. Traditionally,
Kriging uses an anisotropic correlation function which results

in a hyperparameter for each dimension which can result in

extremely expensive computations if a Kriging individual with

many parameters is generated and must be trained. To avoid
this issue, the isotropic Matern 3/2 correlation function was

used, which has only a single hyperparameter regardless of the

dimensionality. An overview of the included model types, their
parameters and optimization strategies is given in Table I.

B. Results and discussion

All resulting models that have been generated in any

generation during the run are shown in Fig. 4, for four different

iterations of the sequential design (with 50, 100, 150 and 200

evaluated samples available). Beyond 200 data points, the pareto

front doesn’t evolve anymore. The pareto front representing the

trade-off between complexity and model error is shown in red,
and the different model types are represented with different

markers. It is clear that for this problem, the pareto front found

after the third run of the adaptive modeling algorithm is already

very satisfying. Clearly, the best scoring LS-SVM model has

already identified most of the relevant parameters. When over
150 data points have been evaluated the adaptive modeling

algorithm finds an LS-SVM which is even better, obtaining
an almost perfect accuracy with exactly 10 input parameters.

Models which include less parameters generally obtain scores

which are worse as they are underfitting the problem.

From Fig. 4, it is clear LS-SVM models are performing

very well for this experiment, whereas SVM models seem

to be completely ignored. This observation is confirmed in
Fig. 5 which shows the relative share of the final generation of

each model type, for each run of the adaptive modeling step.

Generations are mostly made up of several ensembles which

seem to be generated often, as most of them are eliminated

quickly due to their higher complexity. The ELM models
are included mostly in the beginning (given their reasonable

accuracies at that stage) but as more data points become

available they do not seem to benefit as much as other methods
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Fig. 5. The relative contribution of each model type to the final generation of
the GA run, at each iteration of the sequential design.

and it can be observed they are selected less for generation of

offspring. The Kriging models however seem to be less relevant
in the beginning, but as more data points become available

they seem to improve their scores. This is also clear in Fig. 4d:

Kriging models generally obtain better scores compared to the
ELM models. However, they do not show up in the pareto

front, as LS-SVM models with similar error tend to have

better complexity scores. This is also the motivation behind

the elimination of the SVM model type: manual analysis of

the output reveals most SVM models obtained scores equal

to scores obtained with LS-SVM models. However due to

the complexity penalty, the LS-SVM models were usually

preferred.

In general, the proposed method proves to be successful at

identification of relevant input parameters which opens up a

lot of possibilities for surrogate modeling of high-dimensional
problems. In this experiment most model types are able to

approximate the response surface very well and the model

type selection was mostly driven by our specification of the
model complexity defined mostly in terms of the training time.
This however helps us to tackle the biggest disadvantage of

our proposed method: the total training time. As many models

need to be trained (including hyperparameter optimization), a

preference towards models types which perform this task faster
is justified. It can also be observed in Fig. 4d that not many

models have obtained a satisfying score. Analysis revealed that

many models trained with 8 to 15 parameters were trained on

the wrong subset of parameters. Allowing more generations in
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Fig. 4. All trained models as part of the adaptive modeling step, at four different iterations of the sequential design process. Surrogate model types are denoted
by ◊ for LS-SVM, ◻ for SVM, △ for Kriging, ○ for ELM and ⋆ for Ensemble models. The pareto front P has been marked in red, and its markers are filled.

the adaptive modeling step overcomes this problem as during
the generation of extra generations the right variable subset
becomes more popular and more models will obtain good
accuracies. However, given the size of the search space and

the total amount of models built on quite a small set of data,
it is very satisfying to observe that our approach has managed
to find identify the proper set of variables in reasonable time
(the run took 3 hours in total to complete). Whether or not
this worth the effort depends on the type of application. If
obtaining a single data point from the simulator is a very

lengthy process and the input space is high-dimensional, our
proposed methodology potentially saves a lot of computing
time.

VI. CONCLUSION

This paper contributes a new approach to the adaptive

modeling step of the surrogate modeling process with sequen-
tial design. It extends earlier heterogeneous model selection
approaches [17] with automated feature selection to identify
relevant input parameters. This is a significant improvement
for surrogate modeling of applications with a high-dimensional
input space, as parameters with low significance can be
excluded resulting in models that are easier to interpret.

Furthermore, a significantly smaller input space needs to
be approximated. Application of our methodology to a 30-
dimensional problem shows that although the total search

space is big, our method using multi-objective optimization can
discover an optimal set of input parameters relatively quick.

Future work focusses on enhancing the crossover and
mutation operators to find optimal subsets of input variables
even faster, and get more out of the available model types. Also
the construction of ensembles can be improved with more recent
developments. In addition, the adaptive sampling schemes
should avoid collapsing samples due to the dimensionality
projection. Also, information from the best models obtained
so far can be included into the sampling to focus stronger
on relevant input parameters: this should result in a better
interplay between the modeling and sampling algorithms. Also
recent developments on tuning experiments for the NSGA-II
algorithm can be included.
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