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Abstract: Nowadays, the harsh industrial environment remains one of the vital challenges for an effective deployment of
wireless technologies in factories to promote the industrial upgrade. In this study, a complete solution is proposed for
robust radio communications in indoor factories. Herein, measurement setups are integrated with industrial mobile
facilities, e.g. an automated guided vehicle and a mobile robot. Calibration is advised for accurately revealing an
industrial radio environment. A hybrid sequential design strategy is used to enhance the efficiency of the measurement
campaign. This further leads to a surrogate modelling based radio environment map, which facilitates a holistic view
and evaluation of the radio quality of service over the target shop floor. In addition, an over-dimensioning heuristic is
proposed to guarantee that every target location can be wirelessly covered by at least two access points (APs).
Moreover, the smart switch mechanism dynamically powers on/off the over-dimensioned APs, so as to ensure full
coverage even at the presence of physical disturbance. The investigation on two real factories and the coverage
prediction tool WHIPP further demonstrates the solution’s effectiveness. Eventually, a rich outlook is drawn for the
roadmap towards an artificially intelligent system for robust industrial wireless communications.
1 Introduction

The industry is currently undergoing an emerging evolution closely
associated with communication technologies. In the German Industry
4.0 initiative [1], field devices, machines, plants, and factories are
envisioned to be connected to a network by means of communication
infrastructures. This will further allow storing in the cloud all the
documents and knowledge about the physical objects [e.g.
three-dimensional (3D) model, topology, process data, etc.]. In North
America, analogous ideas have been brought up under the name
Industrial Internet [2]. Its target applications are even not limited to
industrial production, and include, e.g. smart electrical grids.

Overall, wireless technologies gain dominant popularity over
cabled technologies in the various industrial upgrades. In smart
factory [3], ubiquitous industrial modular structures are
interconnected by various wireless technologies, e.g. WiFi, ZigBee,
Bluetooth, 6LoWPAN, cellular networks, WirelessHART, ISA100,
and VHF/UHF radios. This enables flexible production processes
that will adaptively deal with rapidly changing and personalised
customer demands. According to Cisco and Rockwell Automation,
the advantages wireless networks can bring to industry include [4]:
(i) lower installation costs due to cabling and hardware reduction,
(ii) lower operational costs by eliminating cable failures, (iii) ability
to connect hard-to-reach and remote areas, and (iv) gains in
productivity due to equipment and personnel mobility.

The common wireless industrial applications are summarised in
Table 1, with the requirements on important quality of service (QoS)
metrics, e.g. latency, packet loss rate, jitter, and availability. They
may be run at a range of end-entities, e.g. computer hosts, robots,
sensor-mounted autonomous mobile units (e.g. automated guided
vehicle or AGV), data-support systems (e.g. servers storing inventory
details), and roaming workers with personal digital assistants.

However, radio wave propagation in factories is generally
vulnerable, due to the harshness of industrial indoor environments
which cause short-term or long-term shadow fading. According to
[6], the steel, metals, and rotating machinery often cause the
received signal strength (RSS) to drop as much as 30–40 dB under
a short time period. Vehicles, such as trucks and forklifts parking
in front of wireless nodes, may eliminate the communication
completely. The harshness relevant to the shadow fading can be
further illustrated as machinery, containers, racks, and reorganised
production lines. As a result, wireless users on the shop floor may
often experience a lack of coverage and intermittent connectivity.

Consequently, a solution is proposed in this paper for robust radio
communications in indoor factories. This solution is implemented in
a unified system, which conducts measurement control, robot
mobility control, measurement path optimisation, data
visualisation, and solution simulation in a centralised manner. Its
contributions are fourfold. (i) Automatic measurements facilitate
real-time collection of radio QoS metric(s) from the perspective of
clients. A sequential design algorithm proposes efficient
measurement paths to the robots. (ii) The surrogate model based
radio environment map (REM) enables holistic radio QoS
monitoring, and thus an easy identification of coverage holes on
the target shop floor. (iii) Over-dimensioning facilitates a
redundant wireless coverage, and physically offers highly flexible
network reconfigurability against shadow fading. (iv) Extensive
industrial empirical measurements and simulation demonstrate this
solution’s effectiveness for maintaining the robustness of radio
communications under the harshness of industrial environments.

Section 2 reviews the recent relevant work and limits the scope of this
paper. Section 3 introduces the proposed composite solution. Sections 4
and 5 present the empirical studies and simulation of this solution,
respectively. Section 6 draws the conclusion and gives the outlook.
2 Literature review and scope

In recent years, there have been rising research interests in the
wireless robustness in industrial environments. Herein, large-scale
fading in manufacturing factory indoor environments is focused on.
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Table 1 Industrial wireless application and performance requirement

Industrial wireless
application

Reference PHY
throughput

Sensitivitya,
dBm

Latency,
ms

Packet loss
rate

Sensitivity to
jitter

Expectation for high or
‘always-on’ availability

supervisory control 256 kbps −88 <100 <10−9 yes yes
distributed I/Ob control 512 kbps −88 ≃100 <10−9 yes yes
peer-to-peer control 1 Mbps −88 <100 <10−9 yes yes
mobile HMIb 1 Mbps −88 >100 <10−4 no yes
long haul SCADAb 256 kbps −88 >100 <10−4 yes yes
asset tracking and RFIDb 128 kbps −88 >100 <10−4 no yes
condition-based monitoring 128 kbps −88 >100 <10−4 yes yes
remote video monitoring 24 Mbps −79 >100 <10−4 yes yes

aThe mapping from PHY throughput to sensitivity is based on the reference conversion for a 802.11g chipset at 2.4 GHz [5]
bI/O: input/output, HMI: human–machine interface, SCADA: supervisory control and data acquisition, RFID: radio-frequency identification
2.1 Characterisation and planning for robustness

In [7], the characterisation of large-scale fading at 3.5 GHz in an
office demonstrates the impact of obstacle losses on the reliable
estimation of shadow depth. After extensive measurements in a
typical living room, large-scale radio channel characteristics are
obtained in [8], which include path loss (PL) exponent, standard
deviation of shadow fading, and so on. The radio channels in
suburban environments were characterised in terms of large-scale
fading [9]. However, little characterisation of wireless propagation
has been performed in industry. In [10], extensive measurements
of RSS at 900, 2400, and 5200 MHz were performed in two wood
processing facilities and two metal processing facilities. The
investigated factory buildings exhibited similar physical properties:
concrete floor, metal ceilings supported by steel truss work, walls
made of thick precast concrete, and metal machinery. Based on
these measurements, the large-scale fading of industrial radio
channels is effectively characterised by a one-slope PL model.

Once the wireless propagation models are characterised, they can
be used in wireless planning [11] for a proper link budget calculation
which is adapted to the target industrial environment. However, most
of the wireless planning solutions are static. They have no
association with wireless management, which can dynamically
maintain the wireless QoS at the network usage stage. During the
planning process, possible major problems are anticipated. The
robustness of a network is conventionally increased by accounting
for a shadowing margin, a fading margin, or an interference
margin. Consequently, this static planning only shows a partial
capability to efficiently protect against coverage gaps caused by
various shadowing effects in harsh industrial environments.
2.2 Measurement-based techniques for robustness

In addition to the characterisation and planning, more recent research
investigates the robust industrial wireless communications at the
network usage stage, during which the deployed network is in use
by clients. Extensive measurements are performed to enable a
better insight into the robustness performance of various
countermeasures against the harshness of industrial environments.

Through live tests in a mineral processing factory, the proposed
lightweight packet error discriminator (LPED) was demonstrated to
enable quick recovery from link outage [12]. Forward error
correction is used in [13] to determine the error pattern in
corrupted packets. This contributes to shorter detection time and
boosts the reliability. The measurements in a paper mill and a
paper roll warehouse demonstrated that the LPED accelerates link
diagnostics by at least 190%, compared with the state-of-the-art
(SOTA) approaches.

The bit- and symbol-error properties of industrial wireless sensor
network were extracted and scrutinised in harsh industrial
environments [14]. The measurement campaign was conducted at
two paper mills and a paper warehouse during 14 days. The
diversity of environments (highly reflective and absorbent) and
setups (large and small separations, moving and static clutters,
interfered and non-interfered links) provide a high degree of
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generality to the measurements. Symbol interleaving was proven
to outperform its bit counterpart.

In [15], the proposed methods predict radio signal coverage by
considering typical industrial environments characterised by highly
dense building blockage. They are corroborated by measurements
in an oil refinery site.

Although these investigations perform extensive measurements,
they have an assumption that the wireless connections are well
maintained. There is very limited literature focusing on the case
where a wireless link may become disconnected due to shadow
fading on the shop floor.
2.3 Wireless standards for industry

Although IEEE 802.11/WiFi is a dominant technology with a
common familiarity, it is currently deemed unsuitable for
industrial applications, e.g. real-time control and localisation.
Various researches are dedicated to the enhancement of industrial
WiFi performance. A QoS-enabled 802.11 network is presented in
[16], which considers real-time constraints for connecting
industrial intelligent devices and controllers. In [17], redundant
wireless adapters share information about the outcome of
acknowledged transmissions, in order to have an enhanced media
access control (MAC) for reliable WiFi networks. In [18], two
alternative rate adaptation techniques for IEEE 802.11 are
designed to meet the specific requirements of industrial
communication systems. However, they all focus on modifying
WiFi standards, where commercial off-the-shelf (COTS) devices
cannot be used anymore.

Other wireless technologies also have limitations in satisfying the
critical industrial requirements. Specifically, WirelessHART is an
emerging wireless technology dedicated to industrial systems due
to its high reliability and robustness. Its MAC layer is based on
globally synchronised multi-channel time division multiple access
which performs channel hopping at each slot. Its network layer
supports multi-path multi-hop routing to provide robust routing
[19]. It is used by Jin et al. [20] to enable real-time
mixed-criticality communication in wireless sensor–actuator
networks. However, its high latency remains a challenge for
real-time industrial control.
2.4 Scope of this paper

In this paper, the IEEE 802.11-compliant WLAN/WiFi is taken as a
representative wireless technology to embody the proposed solution.
The issue of interference is out of scope, but is included in the
outlook. In a general sense, the robustness denotes a constantly
high radio QoS which may combine one or more quantifiable
metrics. Herein, the QoS is quantified as RSS. If the RSS values
within a target environment all stay above a threshold, the whole
environment is considered fully covered and the robustness is
achieved. The countermeasures against the coverage hole focus on
deploying COTS hardware by using the redundancy of the
over-dimensioned and reconfigurable network.
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3 Solution presentation

The proposed solution includes sequential components for industrial
indoor robust wireless communications. Each component will be
introduced in the following subsections. This solution is
implemented as a unified system running on a computer, which
serves as a central controller. A Zotac® ZBox mini-PC (personal
computer) is deployed in Linux Ubuntu. It uses the wavemon
command line tool to gather RSS indicator (RSSI) from a target
access point (AP). The mini-PC is attached to the top of a mobile
robot. The measurement of mini-PC and the mobility of robot are
both controlled by the central controller. Besides, the central
controller encompasses the SUMO Matlab® toolbox [21] to
optimise the measurement path and to visualise the data, and
WHIPP (a heuristic indoor wireless propagation prediction tool
[22]) for proof-of-concept simulation.

3.1 Calibration

The RSSI is a good indicator of radio channel performance since it is
vendor independent. However, there exists a discrepancy between the
RSSI and the radio frequency (RF) power in practice. The mapping is
not standardised. It is done by each wireless chipset manufacturer
separately and is locked to the public, which may therefore be
subject to inaccuracies. Furthermore, COTS wireless products
based on these chipsets contain additional circuitry, printed circuit
board lanes, and soldered connectors around the chipset, which
causes an additional deviation between the two parameters.

To this end, two types of measurements are designed to be
performed simultaneously: (i) RSSI measurements by a client
mobile PC equipped with COTS antennas, and (ii) the actual RF
power measurements by a spectrum analyser. As the frequency
2.4 GHz is often used, the corresponding lambda (i.e. the
wavelength) is 12.5 cm. The two transmitting and two receiving
antennas are mounted about 10 cm apart from each other, which
means large-scale fading is eliminated as a source of deviation
between the RSSI and RF power (10 cm is much shorter than 10
lambda) while the antennas do not obstruct each other’s reception
(10 cm is farther than lambda/2). Additionally, the same antennas
and antenna feeder cables are used for both measurements.
Therefore, solely the different transmit power for both types of
measurements influence the difference between the measured RSSI
and RF power.

3.2 Automatic measurements

Once the measurement setup is calibrated, measurement campaigns
are automatically carried out through the central controller. The
mobility of measurements can be enabled by integration of
measurement setups onto various industrial movable infrastructures,
e.g. AGVs, mobile robots, cranes, forklifts, and so on. The
measured RSSI data are tagged with 2D physical locations.
Specifically, for robot mobility control, a hybrid sequential design
algorithm is proposed within the SUMO Matlab® toolbox,
installed in the central controller.

This algorithm starts from the initial design, where a small set of
measurements are chosen in a space-filling manner. Then it
sequentially specifies additional measurements to be performed at
optimal locations until the overall pattern is characterised, named
sequential design. In both designs, a minimal number of
maximally informative measurements are given by this algorithm,
while all variations in RSSI values are characterised, and the total
distance travelled by the robot is minimised.

3.2.1 Initial design: In literature, several algorithms are available
to generate a suitable set of initial data samples, e.g. Latin hypercube
design, random sampling, orthogonal arrays, uniform grid, and so
on. Such designs are well studied in the case of point-based
measurements. For the automatic mobile measurement path, it is
preferable to measure along a Hilbert curve that specifies a
sequence of trajectories having space-filling properties. A Hilbert
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curve is basically a Lindenmayer system that can be expressed
using the following production rules for axiom ‘X’

X � −YF + XFX + FY−
Y � +XF − YFY − FX+ (1)

where the symbols F, +, and− are constant implying moving
forward, turning right by 90°, and turning left by 90°, respectively.

3.2.2 Sequential design: In the general sense, the order of the
Hilbert curve remains to be decided for each application case. If it
is chosen too low, the initial set of measurements might be too
sparse in certain regions. Therefore, additional measurements must
be performed. The spatial location of these additional
measurements is determined by using the LOLA-Voronoi
algorithm [23], which balances exploration of the whole
environment and exploitation of interesting regions.

The exploration component is based on a Voronoi tessellation that
divides the measurement field into disjoint cells. Each cell comprises
the points that are closer to one particular measured sample as
opposed to any other measured samples. The sparser regions in the
field will therefore be covered by larger Voronoi cells, in which
additional samples are preferably chosen. The exploitation
component focuses on regions where the corresponding RSSI
values show rapid variations. Such regions usually need more
measured data to be characterised and modelled accurately. To this
end, measurements should be performed in regions where the
estimated non-linearity of those values is the highest, based on
neighbourhood selection and local linear approximations. Both
components are combined into a metric that balances both of them
and guides the sample selection.

3.3 Over-dimensioning

On the basis of the former automatic measurements, a novel
approach, named ‘over-dimensioning’, is designed for AP
planning and deployment. It guarantees that each target location
on a shop floor is able to be covered by at least two APs. It
includes the following steps.

3.3.1 PL model establishment: The data collected from
automatic measurements can be used to characterise the radio
propagation in indoor factories. By considering exclusively the
large-scale fading, PL (in dB) is calculated as

PL = PTx + GTx + GRx − kPl (2)

where PTx is the transmit power, GTx and GRx are the Tx and Rx
antenna gains, and 〈P〉 is the RF power samples (in dBm) which
are averaged over a distance of several lambdas (to eliminate the
small-scale fading, while having approximately the same PL).

Furthermore, PL samples can be fitted in the following form

PL(d) = PL0+ 10n · log10(d)+ j (3)

where PL0 is the PL at the reference distance of 1 m (in dB), n is the
PL exponent which is a dimensionless parameter indicating the
increase in PL with distance, and j is the deviation between
measurement and model (in dB).

3.3.2 Demand estimation: A clear view should be gained on
the maximum throughput demand of the target industrial region, in
order to accordingly determine the capacity of each AP. As a
result, it is necessary to identify and forecast the wireless
application per client, per time unit, and per room in the target
factory. Each application has its corresponding bit rate range.
Table 1 presents some common industrial wireless applications
and their reference bit rates. The required throughputs can be
further converted into the corresponding sensitivity according to
existing literature. An illustrative mapping for 802.11 g at 2.4 GHz
is indicated in Table 1. Whether this required throughput is
377



actually achieved depends not only on the received power, but also
on the number of simultaneous users, the interference, protocols
on higher layers, and so on. Nevertheless, this is out of scope of
this paper, and can be explored in future work.

3.3.3 Over-dimensioning: Fig. 1 gives an illustration of the
over-dimensioning philosophy. Herein one shop floor is by default
considered to be so large that at least two APs need to be
deployed for a full or quasi-full coverage. A redundant coverage is
brought by over-dimensioning. This is similar to the philosophy of
mesh networks, where redundant paths exist for robustness.
However, the distinction is that the over-dimensioning is rather a
physical approach, while the mesh is on the network layer. A
redundant coverage is essential for robust industrial wireless
communications, where the radio propagation easily becomes
susceptible to the dynamic disturbance, e.g. moving objects and
human operators which cause short-term shadowing, and
reorganised production lines which cause long-term shadowing. As
a consequence, an obvious QoS degradation may occur randomly
and frequently. In case that the QoS provided by a link is or is
predicted to be threatened, the network will start the
reconfiguration to maintain a good QoS (see Section 3.4.2).
Therefore, over-dimensioning serves as a network design strategy
for robustness by increasing AP/link redundancy against temporal
changes in AP/link states or properties. Instead of requiring a
long-term change to the communication protocol stacks, COTS
hardware can still be used.

3.4 Reconfiguration

When the deployed network is in use, automatic measurements
increase the network’s diagnostic capability, and the network
reconfigurability aims at dealing with shadowing problems which
occur quite randomly on the target shop floor.

3.4.1 Measurement-based monitoring: The distributed
mobile measurement setups automatically conduct measurements
around the shop floor and return real-time feedback. The
sequential design (see Section 3.2.2) can be applied to enhance the
measurement efficiency – only a limited number of locations are
automatically selected for additional measurements. Furthermore,
the fixed APs and wireless clients can monitor the radio
environment themselves, and thus provide additional feedback to
Fig. 1 Proof-of-concept demonstration for over-dimensioning: each
location on the shop floor is conceptually covered by at least two APs. The
light orange rectangle denotes a general shop floor. The small solid circles
represent APs. The APs are placed on the bounds of the shop floor
according to the order indicated by the numeric beside each AP. Situated
in the centre, each AP has a large hollow circle around it, standing for
this AP’s coverage. The group of solid and dotted circles corresponds to
an individual and complete set of APs that can cover the whole shop floor,
respectively

378
the central controller. Consequently, the real-time feedback
effectively provides information on the radio environment to the
central controller.

On the basis of measured QoS values, a surrogate model can be
constructed by using the Kriging interpolation algorithm in the
SUMO toolbox. This model contributes to a REM, which presents
the spatial distribution of QoS values over the target environment.
Triggered by predefined events, the central controller updates the
REM. The trigger events can be various, e.g. receiving a predefined
amount of latest feedback measurements, a certain time period, a
change of industrial indoor topography, the model uncertainty
surpassing an interpolation error threshold, and so on. Therefore, the
latest surrogate model characterises the current environment, and
facilitates the network reconfiguration for staying robust.
3.4.2 Network reconfiguration: Once a weak region is
indicated by the REM and stays unimproved during a defined
judging period, a proper network reconfiguration will be
cognitively triggered to achieve the ‘best coverage’. The network
reconfiguration can be illustrated as powering on/off APs,
switching power levels of APs, switching radio channels, and so
on. The judging period, trigger events, and criteria for finding the
‘best coverage’ can all be varied, and depend on a specific
industrial case. For instance, the defined period can be 2% of the
scheduled production period for a certain production line. During
this defined period, the indicated region is continuously focused
on and evaluated with the REM. A trigger event can be that <95%
of the whole shop floor is wirelessly covered. The ‘best coverage’
can be the largest coverage on the shop floor, an
always-guaranteed coverage on some emphasised regions where
there is a prioritised requirement for continuous throughput
provision, and so on.
4 Empirical studies

The measurement parts of the proposed solution were demonstrated
in real industrial environments. The involved truck factory is located
at Flanders, Belgium, including a truck factory and an AGV factory.

4.1 Calibration

The mapping between the RSSI and the true RF power was
quantified based on measurements in the production hall of the
truck factory. Fig. 2 shows the mobile robot based measurement
setup involved in this calibration. At the Tx side, which is fixed, a
D-Link DI-624+ AP sends wireless packets on WiFi channel 1
with a transmit power of 7 dBm. For the received RF power
measurements, a signal generator transmits a continuous wave
signal at 2470 MHz with a power of 14 dBm. This frequency is
sufficiently separated from the frequency band used by channel 1,
to avoid interference with the RSSI measurements.

At the mobile Rx side, the whole measurement equipment is
mounted on the robot’s platform, shown by Fig. 2b. The Zota®

ZBox mini-PC collects RSSI in channel 1 on the IEEE 802.11b/g
standard interface. A Rohde & Schwarz FSL6 spectrum analyser is
used to sample the true received RF power.

The robot randomly drives around, while the mini-PC and laptop
continuously measure and store the RSSI and received RF power,
respectively. The gathered RSSI and RF power samples are
subsequently averaged to remove the small-scale fading caused by
the slight displacement between Tx and Rx. The averaging interval
is 10 wavelengths at 2470 MHz. The number of averaged RSSI
samples equals 207 for the truck factory. Then, the transmit power
is subtracted from the averaged RSSI and RF power samples, so
both types of measurements appear to have the same transmit
power of 0 dBm.

Fig. 3 shows the averaged and linearly shifted RSSI and RF power
(〈RSSI〉0 dBm and 〈P〉0 dBm, respectively) versus distance for the truck
factory. It is clear that RSSI underestimates the true received RF
power. The underestimation of the RSSI is then calculated as the
IET Sci. Meas. Technol., 2016, Vol. 10, Iss. 4, pp. 375–382
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Fig. 2 Mobile robot measurement setup and industrial environment example

a Transmitter (Tx) side
b Receiver (Rx) side
difference 〈P〉0dBm− 〈RSSI〉0dBm between corresponding values at the
same Tx–Rx distance. A conservative assessment of the RSSI
underestimation (denoted as M) is then determined as the fifth
percentile of these differences. During the network planning stage,
M is added to the measured RSSI samples to estimate the true
received RF power, and is conservative in the sense that it does not
overestimate the RF power. For the Zotac® ZBox mini-PC, M was
found to be equal to 9.46 dB. It stays the same as long as the pair
of ‘AP + client + antennas’ is unchanged. The clear awareness of the
discrepancy between RSSI and RF power enhances the precision of
the entire system, since the system works on sensitivity (i.e. RF
power) instead of RSSI (see Table 1, Sections 3.3 and 5).
4.2 Automatic measurements

The RSSI measurements for the network planning were conducted in
the AGV factory, with the same setup as the one in Fig. 2b, except
Fig. 3 Averaged and shifted RSSI and received RF power versus distance
for the truck factory. RSSI was found to underestimate the received RF
power. A linear shift was further found to be 9.46 dB in the fifth percentile
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that the spectrum analyser, together with the connected laptop, was
not used any longer. The integration of measurement setups with a
mobile robot was carried out. The measured data is in JSON
format. The measurement setups store the measured data on their
local CouchDB databases, which synchronise with the central
controller using the measured WiFi network.

On the basis of 719 RSSI samples by using the initial design and
sequential design (see Section 3.2), a Kriging surrogate model was
built and validated on a separate set of 268 measurements that
were performed at random locations within the area covered by the
second-order Hilbert curve (see Fig. 4). This surrogate model
contributes to a REM (see Fig. 4). For the purpose of a reliable
evaluation on the quality of the obtained surrogate model, a
root-relative-square error (RRSE) was applied to the model within
this measurement validation set as follows

RRSE y, ỹ
( ) =

�����������������∑n
i=1 yi − ỹi

( )2
∑n

i=1 yi − �y
( )2

√√√√ (4)

where the two vectors y and ỹ, respectively, contain the true and
predicted RSSI values, and the scalar �y is the mean true RSSI
value, respectively. It was found that the resulting Kriging model
achieved a RRSE of 0.2945, which is fairly low, since a RRSE
has a range from 0 to the positive infinity. What is more, the
Pearson correlation coefficient of the two vectors y and ỹ was also
calculated. It can lie between −1 (total negative correlation) and 1
(total positive correlation), and is defined as

ry,ỹ =
cov y, ỹ

( )
sysỹ

(5)

where cov is the covariance, and σy and sỹ are the standard
deviations of y and ỹ, respectively. In this investigation, it was
0.9625. This implies a strong correlation between the actual RSSI
behaviour and that predicted by the model.
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Fig. 4 REM, shown on the central controller, specifically indicating RSSI
spatial distribution. The AP is placed about 3 m outside the top-left region
of the REM, and is oriented towards the neighbourhood of the point (7000,
1400). The mobile robot automatically performs measurements, by
following the second-order Hilbert curve (dots) first, and then the
LOLA-Voronoi sequential design (crosses). The Hilbert curve measurement
path design tries to cover the test environment as evenly as possible,
whereas the LOLA-Voronoi algorithm focuses on complementary
measurements in locations where the RSSI values are highly dynamic
5 Proof-of-concept simulation

In this section, simulation is performed in WHIPP. All types of AP
configurations and physical building layouts are able to be handled in
WHIPP. An empirical propagation model is first established
statistically, based on the previously calibration and measured
RSSI. A brief scenario is then created to demonstrate the concept
of reconfiguration of the over-dimensioned network for robust
industrial indoor radio communications.
Fig. 5 Simulation of over-dimensioning in the WHIPP tool. Each arc
represents the coverage range of an AP. Each location in the factory hall
is covered by at least two APs
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5.1 Empirical propagation model

The unknown parameters in (3) are determined through multiple
regression. PL0 is equal to 46.91, and n is 1.96. The error term j
is assumed to follow a zero-mean Gaussian distribution with
standard deviation σ (in dB), which equals 2.39 dB. The model’s
coefficient of determination R2 amounts to 0.73, which shows that
an appreciable amount of PL variability is explained by the
log10(d )-dependency.

Besides, the attenuation loss caused by metal storage racks in
another hall was measured by placing two Rx: one Rx was
in line-of-sight (LOS) with the Tx, and the other Rx was in
non-line-of-sight (NLOS) with a metal rack between the Tx and
Rx. The average received power along the LOS track is equal to
−49.5 dBm, while the average received power along the NLOS
track is −54.1 dBm. The metal rack attenuation loss is thus the
difference between both values, i.e. 4.6 dB.

5.2 Over-dimensioning

The over-dimensioning algorithm was implemented in WHIPP. The
following configurations are considered. (i) The simulated
environment is a factory hall that has the same size as that in
Fig. 4 (10 m × 10 m), and is composed of concrete walls. (ii)
There is no AP previously installed within the hall. APs can only
be placed on the walls, using IEEE 802.11g. (iii) The first AP is
placed in the middle of the wall. (iv) The preciously obtained PL
model is used and three metal racks are present.

Fig. 5 presents the four APs planned and deployed by
over-dimensioning in the simulation environment. It is obvious
that each AP is placed in the middle of a hall wall, with two
adjacent APs located on its coverage edge. Consequently, the four
hall corners are covered by two APs, the centre area by four APs,
and the remaining parts by three APs (see Fig. 5). This shows a
strong coverage redundancy over the entire factory hall.

5.3 Network reconfiguration

To deal with the coverage gaps caused by shadow fading, the
over-dimensioned APs are intelligently controlled in WHIPP for
simulation. The empirical model obtained in Section 5.1 is used.

5.3.1 Smart AP switch mechanism: For an illustration of
network reconfiguration, a smart AP powering on/off mechanism
is used to validate the conceptual capacity for keeping robust
against the dynamics in an industrial indoor environment. Once
the four APs are over-dimensioned, only one is switched on, while
the other three are switched off during the normal usage course.
Standby mode is out of consideration since switching off
contributes to a maximal energy saving. Alternative strategies are
possible. For instance, the APs could stay on, but not operational,
ensuring better responsiveness at the cost of higher energy
consumption. The smart switch mechanism was further simulated
in WHIPP. The initial scenario is that some metal racks cause
shadowing effects on the region behind them. The minimum
required received power (PRxMin) for each location was set as −68
dBm (which is the highest reference RF power for 802.11g),
considering that each location has the same throughput
requirement as the remote video monitoring. A location point is
considered as covered if its receiving radio power is greater than
PRxMin. An area’s coverage rate (Rc) is the ratio of the number of
covered location points within this area to the area’s total number
of location points. The target for the smart switch to search for the
best solution (or for the network to stay robust against shadow
fading) is that Rc should not be <95%. The previous empirical
model was used in the link budget calculation.

5.3.2 Simulation: As illustrated in Fig. 6a, the metal racks
obviously impede the radio propagation from AP1 to the bottom
right region. As a consequence, its Rc drastically drops to 46%
(see Table 2), i.e. less than half of the hall is covered.
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Fig. 6 Current AP on/off state and the optimal solution proposed by smart switch in the simulation case. The APs, which are over-dimensioned (see Fig. 5) but
are switched off, are not shown on the two maps

a Current AP on/off state
b Smart switch

Table 2 Example for cognitive decision making of the smart switch

Solution AP1 AP2 AP3 AP4 Coverage rate Rc
of the target
region, %

Mean received
RF power,

dBm

1 on off off off 46 −59
2 off on off off 100 −36
3 off off on off 100 −40
4 off off off on 100 −48
Conceptually, this weak coverage is sensed by mobile
measurements, indicated by the REM (see Fig. 4), and stays poor
during the defined judging period. Upon surpassing this judging
period, the smart switch algorithm starts to search for the best
solution to enhance the current coverage. As indicated in Table 2,
the best solution, where only AP2 is switched on, achieves a Rc of
100% and the highest mean received RF power (−36 dBm). It is
further visualised in Fig. 6b. Consequently, the ‘always-on’
availability of the WLAN is ensured in the hall, and the robustness
is guaranteed.
6 Conclusions

In this paper, a measurement-based solution is proposed for robust
radio communications in harsh industrial environments. It
harmoniously integrates a range of SOTA and novel wireless
approaches with a focus on large-scale fading. The approaches
include calibration, automatic measurements, over-dimensioning,
and network reconfiguration. This solution took IEEE802.11/WiFi
as a representative wireless technology for case studies. It was
jointly demonstrated in two real factories and in the radio
simulation tool WHIPP.

For the calibration, two measurements were conducted
simultaneously: (i) RSSI measurements by a client mini-PC which
is equipped with COTS antennas, and (ii) the real RF power
measurements by a spectrum analyser. An evident difference of
9.46 dB was found between the RSSI and real RF power. This
reveals the importance of calibration when using a new pair of
‘AP + client + antennas’ for RSS measurements.

For mobile measurements, the measurement setups were
integrated with an AGV and a mobile robot. The mobility of the
IET Sci. Meas. Technol., 2016, Vol. 10, Iss. 4, pp. 375–382
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robot was further controlled by the surrogate modelling technique
for optimal measurements and for building the REM. Through a
minimised number of measurements, the REM was built. The
RRSE was 0.2945 and Pearson correlation was 0.9625, which
indicates a reliable interpolation precision for wireless monitoring.

In the simulation which was based on the measured data, APs
were over-dimensioned such that each location in the target
environment was covered by at least two APs. Metal racks were
moved into the environment which was originally empty. Severe
shadowing was observed in the simulation. As a method of
network reconfiguration, the smart AP switch mechanism made
use of the redundant APs to ensure a full network availability by
recovering the observed coverage hole. A 100% coverage was
finally observed after the network reconfiguration.

As an extension work, measurements can be conducted by
placing between Rx–Tx multiple metal racks which block the
LOS microwave propagation. Besides, more radio QoS metrics
may be jointly considered to quantify the robustness, in addition
to RSS. For instance, jitter and latency are crucial for the
automation control, where a real-time traffic is generally produced.
With the proposed mobile measurement setups, it is easy and
economical to collect these QoS metrics from the perspective of
clients.

Besides the harshness of industrial environments, several radio
sources may coexist in factories, e.g. WiFi, Bluetooth, ZigBee, and
microwave oven. The occupied frequency channels may be
overlapped. Therefore, interference is another issue that challenges
the robustness of industrial radio communications. It is envisioned
to be taken into consideration in future work. The potential means
to cancel or minimise interference include intelligent channel
switch, diversity (time, frequency, and space) schemes, effective
radio resource management, and so on.
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