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Abstract. Accurate multi-fidelity modeling is of high importance in the present day engineering
design process. It allows to model computationally expensive simulations at a reduced cost by
combining simulations with variable fidelity levels. In this paper, a novel algorithm is proposed
to build multivariate models from variable fidelity simulations using rational functions. The
modeling is based on high-fidelity data and low-fidelity data that is sampled over a parameter
space of interest. The former is assumed to be computationally expensive and sparse, whereas
the latter is cheaper to obtain but comes at a lower accuracy. It is shown that accurate rational
models can be built at a reduced cost by combining these types of data. The effectiveness of the
algorithm is applied to several examples and confirmed by numerical results.
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1 INTRODUCTION

Nowadays, there is a growing need for accurate behavioral models in many engineering ap-
plications and research disciplines. These models mimic the input-output behavior of a system,
which is usually characterized by multiple parameters (also called variables) that describe the
physical properties of the system over a certain parameter range of interest. The availability of
such models has proven very useful for tasks like optimization, design space exploration, vir-
tual prototyping and sensitivity analysis. In order to build models, a representative set of data
samples must be collected by performing simulations. Unfortunately, as systems are becom-
ing increasingly complex, the computational cost associated with simulations gets prohibitively
high and limits the complexity of systems that can be handled.

The modeling of data with different levels of fidelity can be very useful in areas where
the computational effort of an analysis is substantial, such as in computational fluid dynamics
(CFD) and finite element (FE) analysis. The term “fidelity” refers to the rigorousness of the
simulations and the level of detail by which an underlying system is represented. For example,
depending on the mesh refinement of a system, physics-based simulations can be performed
to collect data having various accuracy levels. On one hand, a dense mesh discretization leads
to time-consuming simulations used to generate very accurate data, henceforth called high-
fidelity (HF) data. On the other hand, a coarse mesh discretization significantly speeds up the
simulations and generates data that captures the overall trend, although it is often less precise.
This type of data is called low-fidelity (LF) data. It was shown in [1, 2, 3] that accurate models
can be built at a reduced cost by combining data with different fidelity levels, hereby combining
the best of both worlds.

A well known algorithm for multi-fidelity modeling is the auto-regressive co-kriging algo-
rithm, which is a geostatistical technique that originates from mining and geology [4, 5]. It
models the HF data exactly and accounts for spatial correlation in the LF data. In the case of
linear time-invariant systems that are described by a set of differential equations, however, it is
preferable to model the data with rational functions because this model type corresponds better
to the underlying nature of the system [6]. The modeling of data using rational functions has
been studied intensively in literature, and several algorithms are available. The reader is referred
to [7, 8, 9, 10] for a survey and analysis of univariate methods. More details on algorithms for
multivariate rational modeling are provided in [11, 12, 13, 14]. In these works, it is assumed that
the data originates from a single source and that all available data samples have a comparable
level of fidelity. This is one of the key aspects that will be addressed in this paper.

This paper proposes a novel algorithm that builds multivariate models from multi-fidelity
data using rational functions. To this end, it makes use of the barycentric interpolation algorithm
which has excellent numerical properties [15, 16]. First, a multivariate rational model that
exactly interpolates the HF data is built using barycentric interpolation. Second, the remaining
model coefficients are calculated such that the (calibrated) LF data is approximated in a least-
squares (LS) sense. The algorithm is applied to model the quality factor and inductance of a
spiral inductor. Numerical results confirms the effectiveness of the approach.

2 ALGORITHM OUTLINE

The goal of the algorithm is to identify a multivariate rational function R that approximates
the behavioral response of an underlying system f . For notational convenience, it will be as-
sumed that this system depends on 2 parameters (α and β), although the extension to multivari-
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ate responses is analogous and conceptually straightforward.

R(α, β) =
N(α, β)

D(α, β)
=

I∑
i=0

J∑
j=0

cijα
iβj

I∑
i=0

J∑
j=0

c̃ijαiβj

. (1)

To ensure that R matches f as closely as possible, some data is needed to estimate the unknown
model coefficients c and c̃. To this end, the system f is simulated using different levels of
fidelity, resulting in two disjoint sets of data

HF = {(αH
k , β

H
k , fH(αH

k , β
H
k ))}KH

k=1 (2)
LF = {(αL

i , β
L
i , f

L(αL
i , β

L
i ))}

KL
i=1 (3)

The HF data is sampled on a sparse grid of KH = M ×N points that are equidistantly spaced
in the (α, β) parameter space. The LF data comprises KL data samples that can be scattered
throughout the parameter space. Taking into account the computational cost of simulations,
it is assumed that the HF data is sparse when compared to the LF data (KH << KL). To
ensure that both types of data are compatible, the ratio between HF and LF data is computed
as a calibration factor to scale the LF data accordingly [17, 18, 19]. Then, a two-step modeling
approach is proposed:

1. Compute a rational model that exactly interpolates all the HF data by using a barycentric
interpolation formula.

2. Calculate the coefficients of the model in such a way that the (calibrated) LF data is
approximated in a LS sense.

It is assumed that the HF data is too sparse in order to generate a global model with sufficient
accuracy. However, by exploiting the information that is contained within the LF data, it is
possible to control the behavior of model R inbetween the HF data samples. By combining
both types of data, a model R with good overall accuracy is obtained.

3 RATIONAL MODELING ALGORITHM

In order to facilitate a mixture of interpolation and LS approximation, the multivariate ratio-
nal function R in (1) is represented in a different functional form [20]. To fix the barycentric
representation of the rational function [15, 16], the input values of the HF data are used as the
interpolation points such that R(αH

k , β
H
k ) = fH(αH

k , β
H
k ) for k = 1, ..., KH and for any choice

of non-zero barycentric weights (w = [wk] ∈ RKH×1 with wk ̸= 0).

R(α, β,w) =
N(α, β,w)

D(α, β,w)
=

KH∑
k=1

wk

(α− αH
k )(β − βH

k )
fH(αH

k , β
H
k )

w0 +

KH∑
k=1

wk

(α− αH
k )(β − βH

k )

. (4)

The choice of w in (4) allows one to enforce additional properties to the model. In this work,
these additional degrees of freedom are exploited in such a way that the interpolation model
also approximates the LF data in a LS sense. This corresponds to finding optimal value for

3



Elizabeth Rita Samuel, Dirk Deschrijver, Luc Knockaert, Tom Dhaene, Annie Cuyt

the weight w such that sum of the squared residuals is minimized. Note that a residual is the
difference between the actual function value f and the model response.

argmin
w

KL∑
i=1

∣∣∣∣N(αL
i , β

L
i ,w)

D(αL
i , β

L
i ,w)

− fL(αL
i , β

L
i )

∣∣∣∣2 (5)

Unfortunately, problem (5) is non-linear and therefore it becomes difficult to solve in a fast and
accurate way. Instead, Levi proposes to solve a linear approximation of the problem [21].

argmin
w

KL∑
i=1

|N(αL
i , β

L
i ,w)− fL(αL

i , β
L
i )D(αL

i , β
L
i ,w)|2 (6)

This way, an estimate for w can be found by solving a linear set of LS equations (7) of the form
Ax = b using the matlab operator ’\’ (mldivide). Note that this problem is overdetermined
because KL >> KH . One can the weight w0 = 1 in (4) without loss of generality.

A = [aik] ∈ RKL×KH and x = w ∈ RKH×1 and b = [bi] ∈ RKL×1

where aik =
fH(αH

k , β
H
k )− fL(αL

i , β
L
i )

(αL
i − αH

k )(β
L
i − βH

k )
and bi = fL(αL

i , β
L
i ). (7)

It is known that Levi’s formulation is biased and not equivalent to (6), because a weighting
factor 1/|D(αL

i , β
L
i ,w)|2 is omitted in each term of the summation. To improve the accuracy of

the model, the estimated weights wk are refined iteratively by applying the Sanathanan-Koerner
(SK) iteration [9] with explicit weighting as illustrated in [22].

argmin
w

KL∑
i=1

∣∣∣∣N t(αL
i , β

L
i ,w)− fL(αL

i , β
L
i )D

t(αL
i , β

L
i ,w)

Dt−1(αL
i , β

L
i ,w)

∣∣∣∣2 . (8)

This iteration multiplies each row in the LS matrix with an explicit weighting function
1/|Dt−1(α, β,w)|2, which is based on Levi’s initial (iteration step 0) or the previous (iteration
step t−1) estimate of the denominator. This way, updated values of the weights can be found in
successive steps t = 0, ..., T . The final model is then RT (α, β,w) = NT (α, β,w)/DT (α, β,w).
Although the solution of (8) is not guaranteed to converge to the solution of (5) either, the SK
iteration is known to provide good results for sufficiently high signal-to-noise ratios [22].

4 MODEL COEFFICIENT RELAXATION

In (7) it was chosen to set w0 = 1, because numerator and denominator can be divided by the
same constant value without loss of generality. In some cases, this can lead to a poor conver-
gence of the SK iteration. This problem was investigated in [23] and it was proposed to make
w0 a variable in the LS problem. This gives rise to a modified set of equations

[
A − b

]
x = 0.

To avoid the trivial null solution, one additional equation is added to the LS problem.

KL∑
i=1

(
KH∑
k=1

wk

(αL
i − αH

k )(β
L
i − βH

k )
+ w0

)
= KL. (9)
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Equation (9) is scaled in relation to the size of fL(αL, βL) in the LS problem by a scaling factor

scale =
||fL(αL, βL)||2

KL

(10)

Note that this additional equation does not impose any further constraints on the LS problem
other than preventing the trivial null solution. The reader is referred to [23] for a more details.

5 NUMERICAL RESULTS

In this example, the rational modeling of a three turn spiral inductor is considered as shown
in Figure 1. The dielectric has a thickness of 300 µm, a relative dielectric constant ϵr = 9.6 and
a loss tangent tan δ = 0.0002. The conductivity of the metallic layers is equal to σ = 5.8× 107

S/m. The spacing between conductors is equal to 10 µm.

Figure 1: Layout of the spiral inductor (Top View).

The width of the conductors W and the outer length Dout are considered as the 2 input pa-
rameters (α and β) and their corresponding ranges are shown in Table 1. The rational modeling
technique is used to model the inductance L and quality factor Q of the spiral inductor at fre-
quency freq = 2.4 GHz. The L and Q are calculated from the simulated admittance parameters
(Y-parameters) as in (11). The Y-parameters describe the electrical behavior of linear electrical
networks where the terminal currents can be expressed in terms of the terminal voltages [24].

Table 1: Range of the design parameters.

Parameter Width (W ) Outer length (Dout)

Lower bound 4 µm 140 µm

Upper bound 15 µm 210 µm

L(W,Dout) =
1

2πfreq
ℑm 1

Y12(freq,W,Dout)

Q(W,Dout) =
ℑm(Y11(freq,W,Dout))

ℜe(Y11(freq,W,Dout))
. (11)
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Figure 2: HF and LF data samples considered for the modeling using rational function.

The Y-parameters are obtained from the full-wave electromagnetic simulator Agilent Ad-
vanced Design System1 (ADS) Momentum 1, whereas the LF data are obtained using circuit
schematic ADS simulations. The circuit schematic simulations are based on analytical formulas
for the electrical behavior of the spiral inductor, whereas the electromagnetic simulations are
based on the solution of Maxwell’s equations, which is computationally more expensive. A set
of LF and a set of HF data samples are collected on a grid of 5×6 (W,Dout) and 3×2 (W,Dout)
respectively for the frequency 2.4 GHz to build the rational model. The computation time to
get LF and HF admittance parameters at one sample point in the 2D (W,Dout) parameter space
is roughly equal to 0.0301s and 0.2541s, respectively. Note that these timing results were per-
formed on an Intel(R) Core(TM) 2 Duo P8700 2.53 GHz machine with 2 GB RAM and has been
implemented in Matlab R2012b on the Windows 7 platform. For checking the accuracy of the
model, relative error is used, which is defined as follows, where f represents either L or Q.

Rel.Err =
|f(W,Dout)−R(W,Dout)|

|f(W,Dout)|
. (12)

In both cases, 5× 6 and 3× 2 samples of LF and HF are considered as shown in Figure 2. Then
using the proposed technique a rational model is obtained for the L and Q. Figure 3 (a) and (b)
plots the L and Q respectively on a denser grid of 12 × 20 and is validated with HF data on a
similar grid. The relative error (12) for L and Q is plotted in Figure 4 (a) and (b) respectively
and can be seen that the model accurately captures the true underlying system. The evolution
of the normalized root-mean-square error (NRMSE) is compared in terms of iteration count in
Figure 5. The NRMSE for Kv validation points is defined as,

NRMSE =

√
ΣKv

k=1(f(Wk,Doutk)−R(Wk,Doutk))2

Kv

max(f(W,Dout))−min(f(W,Dout))
. (13)

To illustrate the correlation of the multi-fidelity model with the samples considered for mod-
eling, the Spearman Rank Order Correlation Coefficient (SROCC) and the Pearson Linear Cor-
relation Coefficient (PLCC) is studied for both cases. In Table 2, the multi-fidelity model is

1www.eesof.com, Agilent Technologies EEsof EDA, Santa Rosa, CA.
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Figure 3: (a) and (b) plots the model obtained for inductance (L) and quality factor (Q) using the rational function.

compared with the HF and LF training samples that were used for the modeling as shown in
Figure 2. It can be seen that the samples and the model have a strong linear relationship as the
SROCC and PLCC is 0.99. The model is also compared with the HF data used for validation
and is seen that the SROCC and PLCC is equal to 0.99, which again infers that the model re-
sponse is strongly correlated with the true L and Q values, see Figure 6. Table 2 also gives the
values of the NRMSE (13) to assess the multi-fidelity model accuracy for both L and Q.

Table 2: CORRELATION OF MULTI-FIDELITY MODEL WITH THE ACTUAL SAMPLES.

Data set For Inductance (L) For Quality Factor (Q)

NRMSE SROCC PLCC NRMSE SROCC PLCC

High-fidelity training 0 1 1 0 1 1

Low-fidelity training 0.092 0.99 0.99 0.08 0.99 0.99

Validation (high-fidelity) 0.012 0.99 0.99 0.003 0.99 0.99

Thus, the proposed technique generates a rational model from the LF and HF data which is
more accurate than a model built using either the sparse HF samples or dense LF samples only.
Also the model is built at a reduced cost when compared to a model that is built from a larger
amount of HF samples only (see Table 3), leading to a speedup of 21 times.

6 CONCLUSIONS

A novel approach for multivariate modeling of systems using a combination of variable
fidelity simulations has been proposed. The algorithm first makes use of multidimensional
barycentric interpolation for computing a rational model with the HF data, and then the coef-
ficients of this model are iteratively calculated using the (calibrated) LF data in least-square
sense. It is shown that rational function models can be built at a reduced cost by combining
different types of data. The effectiveness of the technique is illustrated using a numerical result.
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Figure 4: (a) and (b) plots the relative error of the model with the original model which is the high-fidelity data.
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