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Abstract
Metamodelling offers an efficient way to imitate the behaviour of computationally expensive
simulators. Kriging based metamodels are popular in approximating computation-intensive
simulations of deterministic nature. Irrespective of the existence of various variants of Kriging
in the literature, only a handful of Kriging implementations are publicly available and most, if
not all, free libraries only provide the standard Kriging metamodel. ooDACE toolbox offers a
robust, flexible and easily extendable framework where various Kriging variants are implemented
in an object-oriented fashion under a single platform. This paper presents an incremental update
of the ooDACE toolbox introducing an implementation of Gradient Enhanced Kriging which
has been tested and validated on several engineering problems.
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1 Introduction

Constructing approximation models or metamodels of computation-intensive simulators to per-
form routine activities, such as optimisation, sensitivity analysis, design space exploration, etc.
is a well-known approach to ease the computational burden. Metamodelling offers a proven
efficient way to imitate the behaviour of computationally expensive simulators. An overview of
various metamodelling techniques is given in [5], [15] and [21]. Kriging based metamodels are
popular in approximating computer generated data which are deterministic in nature. Kriging
for design and analysis of computer experiments was introduced by [13] and is further used in
computer aided applications by various researchers [6, 12, 14].

In general, the primary motivation of any metamodelling approach is to accurately mimic
the behaviour of a computation-intensive simulator over a design space of interest with as few
training data as possible. Hence, the ideas of incorporating (computationally cheap) secondary
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data in the form of gradients, data of different degrees of accuracy, etc. are very attractive. In
this context, gradient incorporation in Kriging, known as Gradient Enhanced Kriging (GEK),
can be found in the literature extensively [2, 7, 8, 10]. However, not many publicly available
implementations exist. Moreover, many implementations are limited to standard Kriging or one
specific type of Kriging. For example, the popular Matlab1 DACE toolbox [9] provides only
the standard Kriging model and does not deal with gradient incorporation in Kriging. Other
publicly available Kriging implementations where none of them deal with gradient incorpora-
tion in Kriging include: Stochastic Kriging [16], DiceKriging2, Gaussian processes for Machine
Learning [11], a Small Toolbox for Kriging (STK)3 and the Matlab Krigeage toolbox4. However,
some publicly available implementations of GEK such as beta version of Bayesian formulation
based GEK code5, Fortran Kriging (ForK) library6, etc. do exist. But, unfortunately, none
of them provide a flexible framework to implement and test new Kriging algorithms. In this
context, this paper presents a Matlab toolbox, known as ooDACE7, which offers a robust and
easily extendable object-oriented framework where various Kriging variants are implemented.

2 ooDACE Toolbox

The ooDACE Toolbox (Design and Analysis of Computer Experiments) is designed to meet
the needs of researchers by providing a flexible and easily extendable Matlab implementation
of various Kriging variants and is well-suited to test and benchmark new Kriging algorithms.
The most significant features of the toolbox include:

• Kriging metamodels:

– Kriging (or Gaussian process) : models single-fidelity data.

– Simple, Ordinary, Universal Kriging : models single-fidelity data using a Gaus-
sian process with the mean as known constant, unknown constant or polynomial
function, respectively.

– Co-Kriging : models multi-fidelity data.

– Blind Kriging : models single-fidelity data using a Gaussian process where the
mean is a polynomial function that is automatically identified.

– Stochastic Kriging : models data of stochastic nature.

– GradientKriging : models single-fidelity data of function and gradient values.

• Efficient computation of derivatives of the prediction model.

• Efficient hyper-parameter optimisation.

• Proper Object Oriented (OO) design.

1MATLAB, The MathWorks, Inc., Natick, Massachusetts, USA
2http://cran.r-project.org/web/packages/DiceKriging/index.html
3http://sourceforge.net/projects/kriging/files/stk/
4http://globec.whoi.edu/software/kriging/
5https://aerodynamics.lr.tudelft.nl/∼bayesiancomputing/
6http://w3.uwyo.edu/∼blockwoo/ForKlib/krigingwrapperGEK 8f90.html
7http://sumo.intec.ugent.be/?q=ooDACE
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• Useful utilities include: cross-validation, integrated mean squared error, etc.

A simplified UML class diagram that shows only the most important public operations of
the toolbox, is shown in Figure 1. The basic functionalities required for building and evalu-
ating a Kriging metamodel are implemented in the GaussianProcess superclass. Similarly,
a new hyper-parameter optimisation technique can be implemented by inheriting from the
Optimizer class. New Kriging variants (e.g., CoKriging, GradientKriging, BlindKriging)
can be implemented by forming subclass that inherits the common functionalities of the
GaussianProcess superclass. In those subclasses, one can extend or override the existing meth-
ods to offer additional functionality (e.g., a method to compute the GEK correlation matrix in
GradientKriging).

Figure 1: The UML class diagram of the ooDACE toolbox.

3 Applications

The performance of GEK in ooDACE toolbox is assessed with the modelling of the 3D Hartmann
function. Figure 2 compares the evolution of (averaged) Normalized Root Mean Square Error
(NRMSE) of Ordinary Kriging (OK) and GEK as a function of number of training samples. For
each number of training samples, 50 different data sets where the samples are chosen randomly
in the design space are constructed. Thus, fitting and accuracy assessment of the OK and the
GEK models are repeated 50 times for each training sample size. Then the error metric is
calculated by making predictions at 500 randomly chosen validation points and the resulting
score is averaged over 50 runs. In Figure 2, it is important to note that GEK contains additional
gradient data at any given sample size. For example, at the sample size of 10, OK contains only
10 function values whereas GEK contains 10 function values and 30 additional gradient values.
GEK can reduce the amount of function values in the training data set by more than 50%
and still reach a similar accuracy level as OK, due to the inclusion of gradient values. It was
shown in [20] that the use of gradient values in GEK results in an improved hyper-parameter
estimation.
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(a) Slice of the actual function
(b) Evolution of averaged NRMSE

Figure 2: Hartmann 3D function. At every sample set, GEK incorporates additional data in
the form of gradients in all the dimensions.

The performance of the ooDACE toolbox is also assessed with various analytical (e.g.,
Branin, Peaks, Ackley, Sphere, Hartmann, Rosenbrock, etc. [4, 17, 18]) and real-life (e.g.,
identification of the elasticity of the middle-ear drum [1], optimisation of a textile antenna
[3], modelling of wall displacement in an artery [17], etc.) functions of varying dimensionality
(2D-20D). One can refer to [17, 18, 19, 20] for more information on the performance analysis
of GEK and other Kriging flavours available in the ooDACE toolbox.

4 Conclusions

This paper presented ooDACE toolbox, a free object-oriented Matlab toolbox for building
metamodels using various Kriging variants. By providing a researcher-friendly framework, the
vision of ooDACE is to offer a unique platform catered to scientists and engineers where ease of
use, transparency and extensibility exist together. Further, with the recent implementation of
Gradient Enhanced Kriging, the ooDACE toolbox aims to provide an up to date Kriging based
metamodelling framework to a large scientific community. Furthermore, a strong emphasis is
placed on implementation and code clarity, documentation, demo scripts, thorough usage in-
structions and stable releases.
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