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Abstract—When approximating complex high-fidelity black
box simulators with surrogate models, the experimental design is
often created sequentially. LOLA-Voronoi, a powerful state of the
art method for sequential design combines an Exploitation and
Exploration algorithm and adapts the sampling distribution to
provide extra samples in non-linear regions. The LOLA algorithm
estimates gradients to identify interesting regions, but has a
bad complexity which results in long computation time when
simulators are high-dimensional. In this paper, a new gradient
estimation approach for the LOLA algorithm is proposed based
on Fuzzy Logic. Experiments show the new method is a lot faster
and results in experimental designs of comparable quality.

I. INTRODUCTION

Simulating complex systems with multiple input and output
parameters can be a very time-consuming process. For exam-
ple, Ford Motor Company reported on a crash simulation for
a full passenger car that takes 36 to 160 hours to compute
[1]. Usually, little or no additional information is available
on the inner working of the system. Use of such simulations
for optimization, sensitivity analysis and understanding of the
system is impractical.

To alleviate these limitations, the simulator approximating
the complex system can be approximated with a surrogate
model (or metamodel). This model mimics the original system
but can be evaluated much faster. Construction of the model
is performed by evaluating the simulator at key points in the
input domain. The responses are used to fit one or more sur-
rogate models: popular choices include polynomial or rational
functions [2], Kriging Models [3], Artificial Neural Networks
[4] and Radial Basis Functions [5]. The constructed surrogate
model can now replace the simulator as it approximates the be-
haviour of the simulator over the entire domain. This approach
is referred to as global surrogate modelling. In local surrogate
modeling, local models are used to guide the optimization
algorithm towards a global optimum. The local models are
discarded afterwards.

The choice of the points (referred to as samples) in
the input domain has a large impact on the quality of the
resulting surrogate model. Ideally, the distribution maximizes
the amount of information on the behaviour of the system. The
configuration of the sample locations is called an experimental
design. In traditional design of experiments the experimental
design is generated prior to the modelling process. This is
referred to as a one-shot design. After evaluation the model
is constructed and the process ends. This approach holds a
fundamental risk: if the model does not meet the required

accuracy, the process has to be repeated from scratch. On the
other hand, since nothing is known about the system we may
evaluate more samples than required. Since each evaluation is
expensive in terms of computation time, this is undesirable.
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Fig. 1. Flow-chart of the SUMO Toolbox work-flow

A more popular choice is sequential design (or adap-
tive sampling). When the process starts, an initial design is
evaluated and a surrogate model is constructed. When the
surrogate model is not accurate enough new samples are
chosen based on information acquired from prior evaluations
and the intermediate model. Sequential design avoids the
risk of under- or oversampling, and uses knowledge about
the system as it becomes available during the process of
determining where to sample next. This process is illustrated
in Fig. 1. Two types of sequential design methods exist:
exploitation -based methods focus on sampling regions in
the input space that require special attention such as steep
ridges and asymptotic or non-linear behaviour. Exploration-
based methods on the other hand sample in regions that have
been sampled sparsely. In practise, both concepts are important
to obtain an accurate model. The LOLA-Voronoi method [6],
[7] is a successful method for sequential design, combining
an exploitation- and an exploration-based algorithm (LOLA
and Voronoi respectively). The method is robust and generates
designs with focus towards non-linear regions by estimating
a gradient in each available point (LOLA). This methodology
has proven to be successful in various research disciplines such
as electromagnetic compatibility [8], [9], macromodeling of
microwave systems [10], [11] and exposure assessment [12].
A drawback is high computational complexity, leading to a
time-consuming sample selection process when many samples

978-1-4799-4509-2/14/$31.00 ©2014 IEEE



have already been evaluated, or the problem becomes high-
dimensional.

This paper presents a modification to the LOLA-Voronoi
algorithm which reduces computational demands. The result-
ing algorithm has the same desirable properties (in terms of re-
quired number of samples to obtain a certain model accuracy)
but is applicable to problems of higher-dimensionality without
causing long computation times. In the second section, the role
of the gradient estimation in the LOLA algorithm is explained,
and the computationally intensive parts are identified. Section
three introduces a fast, new approach to estimate the gradient
based on Fuzzy Logic. This approach is then integrated into
the LOLA-Voronoi algorithm to result in a faster algorithm.
This is illustrated by numerical results in Section 4.

II. LOCAL LINEAR APPROXIMATION

The motivation behind the LOLA component of LOLA-
Voronoi is the idea that regions with a dynamic response
should be sampled more densely compared to very smooth
regions, as illustrated in Fig. 2. The linearity is estimated
by constructing a linear approximation in each sample and
comparing this linear fit with nearby samples. If the fit is bad,
this means the region surrounding the sample has a dynamic
response and should be exploited. The LOLA algorithm does
not incorporate the size of this region: if it is to big compared
to regions surrounding other samples, the Voronoi part detects
this and adds more samples in this region, which potentially
leads to discovery of other non-linear regions, that can be
exploited in the next iteration etc.
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Fig. 2. Sequential design generated by LOLA-Voronoi for the Peaks function.
Starting from a 12 point initial latin hypercube, samples were added one at a
time. The sample density in the central non-linear region is higher compared
to the flat surrounding.

A function f : Rd → C, representing the complex system,
is sampled at a set P = {p1,p2, ...,pN} of N points. The
best local linear approximation is the gradient defined as

∇f =

(
∂f

∂x(1)
,

∂f

∂x(2)
, ...,

∂f

∂x(d)

)
.

However, since nothing is known about the system in advance,
gradient information is usually unavailable. This requires a
method to obtain a gradient estimate g. Since we do not pursue
a uniform distribution of samples over the input space, or any

other pattern, traditional indirect gradient estimation methods
such as finite differences are inapplicable [13].

For each sample pr ∈ P (referred to as the reference
sample), a subset known as the neighbourhood is defined:
N(pr) = {pr1, . . . ,prv} ⊂ Pr with Pr = P \ pr and
v ≥ 2d. Least squares is applied on N(pr) to obtain a
gradient estimation g. The difference between the true output
value and the predicted value (using the gradient estimation)
at neighbouring points is used as a measure of linearity. This
measure is combined with an exploration based measure (pro-
vided by Voronoi) indicating how well the space surrounding
the reference sample has been sampled. This information is
used to rank all samples in P , and candidate samples are
selected in the neighbourhood of the highest ranked samples.
The key issue here is: how to define the neighbourhood to
obtain a reliable gradient estimation based on the information
available?

The LOLA algorithm answers this question with a selective
approach, for a sample each possible neighbourhood of v
points is scored in terms of two criteria:

1) Cohesion: A neighbour should be as close to the
reference point as possible, as we are constructing
a local approximation (proximity).

2) Adhesion: The neighbours should be as far away from
each other as possible, in order to cover the space
surrounding the reference point (surrounding).

Clearly it is impossible to maximize both: when the neigh-
bourhood is very close to the reference point, it will have
a higher adhesion value. The best trade-off for each sample
(given the other samples) is saved. When Nnew new samples
have been evaluated and the algorithm is ran to determine
new candidates for evaluation, each existing neighbourhood
is revisited and updated if a better configuration is possible
in addition to constructing Nnew neighbourhoods. Although
some optimizations exist to reduce the search space, the overall
complexity of this approach is O

(
22dNNnew

)
. When the

dimensionality of the problem at hand increases, the run time
increases dramatically.

III. FUZZY GRADIENT ESTIMATION

In this section a new approach is introduced to estimate
the gradient in any pr. The method has a complexity of only
O
(
N
)
, leading to much faster runtime. Instead of carefully

selecting v points as neighbourhood, all points within a radius
α are included in the neighbourhood:

N(pr) = {p|p ∈ Pr, ||p− pr||2 < α}.

To be able to solve a Least Squares problem the cardinality of
N(pr) has to be atleast d, if this requirement is not met, the
system becomes underdetermined: this is the only constraint
on the choice of α.

With this definition of the neighbourhood, the notion of
cohesion and adhesion is lost. To reintroduce this valuable in-
formation, we formally define these two concepts ∀p ∈ N(pr):

C(pr,p) = ||p− pr||2,

A(pr,p) = min
q∈Pr

||q − p||2.



RULE COHESION ADHESION WEIGHT
1 CLOSE LOW HIGH
2 CLOSE HIGH AVERAGE
3 NOT CLOSE LOW AVERAGE
4 NOT CLOSE HIGH LOW

TABLE I. FIS RULE BASE FOR WEIGHT ASSIGNMENT.

These values are used to assign a weight for each point in
the neighbourhood by using them as inputs to a Mamdani
Fuzzy Inference System (FIS) [14]. For cohesion, a single
membership function close is defined. The adhesion input
parameter has two membership functions are defined: low and
high. The weight output range is [0, 1] and is subdivided in
3 membership functions: low, average and high. The relation
between the input variables and the weight is described by four
IF THEN rules as listen in Table I. The weights are then used
to solve a Weighted Least Squares with the points in N(pr)
to obtain the gradient estimate g. An example of the response
of the FIS is shown in Fig. 3.

Fig. 3. Example of the response of the FIS. Points with high cohesion (=
low numerical values, as it represents the distance to the reference point) and
low adhesion strongly influence the gradient estimation, as opposed to points
with low cohesion and high adhesion.
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Because this gradient estimation method does not have
to score several candidate neighbourhoods but estimates it
directly from the surrounding space, a lot of computational
complexity is avoided. The algorithm mainly relies on distance
calculations, which can be done efficiently by calculating
a distance matrix prior to estimating the gradient in each
sample. The gradient estimation can occur in parallel, since
the computation is independent for each sample. When new
candidates have been evaluated by the simulator and added
to the set P , the distance matrix can be updated in the
next sequential design iteration. This means the complexity of
LOLA with Fuzzy gradient estimation (FLOLA) only grows
in terms of the size of the set P (which is N ).

IV. NUMERICAL EXPERIMENTS

The FLOLA algorithm can be combined with a Voronoi
exploration algorithm, similar to LOLA-Voronoi. This new
algorithm will be referred to as FLOLA-Voronoi. The experi-
ments are performed with the SUrrogate MOdeling (SUMO)
MATLAB toolbox [15]. Designed as a research platform for
sequential sampling and adaptive surrogate modeling featuring
high extensibility, this MATLAB toolbox makes it very easy

TABLE II. SUMMARY OF THE RESULTS FOR MODELING TEST CASE 4.
THE LANGERMANN FUNCTION WAS SAMPLED UP TO 1500 POINTS, AND

IT’S RRSE OVER A PRE-EVALUATED VALIDATION SET OF THE FINAL
MODEL WAS RECORDED FOR SEVERAL MODEL TYPES. EACH EXPERIMENT
RAN TEN TIMES TO CANCEL OUT NOISE BY RANDOM FACTORS. THE 95%

CONFIDENCE INTERVALS ARE SHOWN BETWEEN BRACKETS.

LS-SVM RBF ANN
FLOLA-Voronoi 0.32 (0.31, 0.33) 0.18 (0.17, 0.19) 0.23 (0.21, 0.25)
LOLA-Voronoi 0.31 (0.30, 0.32) 0.18 (0.17, 0.19) 0.23 (0.22, 0.24)
Voronoi 0.35 (0.34, 0.36) 0.24 (0.23, 0.25) 0.27 (0.25, 0.29)
Model Error 0.61 (0.53, 0.68) 0.17 (0.16, 0.18) 0.63 (0.55, 0.71)
Random 0.49 (0.46, 0.53) 0.37 (0.35, 0.39) 0.37 (0.35, 0.39)

to implement and compare this new sampling approach to
other sequential design methods. The work-flow of the SUMO
Toolbox is illustrated in Fig. 1.

A correct model evaluation process is crucial to the success
of the surrogate modelling process [16]. For the experiments
in this section, the Root Relative Square Error was calculated
over a dense pre-evaluated validation set:

RRSE(x, x̃) =

√√√√∑N
i=1 (xi − x̃i)

2∑N
i=1 (xi − x̄)

2
.

xi represents the vector of the true responses at all sam-
ples, x̃i represents the estimate by the surrogate model, and
x̄ the mean. Next to FLOLA-Voronoi and LOLA-Voronoi,
three more sequential designs were tested: the exploration-
based Voronoi component (without additional exploitation al-
gorithm), a Model Error based sampling approach which sam-
ples in regions where the intermediate models make mistakes,
and random sampling.

A. Langermann 2D

The Langermann function is very complex: it features
several highly non-linear regions spread over the input space,
with quasi-flat surfaces between them. Modelling this function
up to a RRSE of 0.05 can be very time consuming: model
types such as Kriging will suffer from numerical instability
as many samples are required to obtain this level of accuracy.
An initial Latin hypercube of 46 points complemented with
a 2-level factorial design is used as a starting point. Each
iteration, a batch of 25 points is added by the sequential
design strategy and three types of models are constructed:
Radial Basis Functions (RBF), Least-Squares SVM’s [17]
optimized with the DIRECT algorithm [18], and Artificial
Neural Networks (ANN) trained with Levenberg-Marquardt
backpropagation with Bayesian regularization (300 epochs)
[19]. The topology and initial weights of the neural networks
are optimized by a genetic algorithm. This process is repeated
up to a maximum of 1500 samples.

Table II shows the results: with the exception of the
combination of Model Error and RBF models, the best final
scores are obtained with LOLA-Voronoi and FLOLA-Voronoi.
The scores obtained with both methods are similar, which
indicates that the new exploitation based algorithm (FLOLA)
behaves like its predecessor.

This observation is confirmed by the evolution of the
error as the modeling process evolves and more samples are
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Fig. 4. Evolution of the average RRSE in function of the sample size
for the Langermann function modeled with Artificial Neural Networks. The
evolution of the error of FLOLA-Voronoi and LOLA-Voronoi is very similar
and outperforms the other methods.

selected. Fig. 4 shows how the average error of the best model
evolves for each sampling algorithm used to model the Langer-
mann function with the ANN models. The 95% confidence
intervals are indicated by the errorbars. It is clear that the
FLOLA-Voronoi and LOLA-Voronoi algorithms perform very
similar and outperform the other strategies.

B. Levy 4D

The second experiment a four dimensional Levy function:
this is a medium-dimensional problem for global surrogate
modelling. Because this function is less complex, it is possible
to reach a strict target accuracy in reasonable time. Therefore,
the experimental setup was changed: A Latin hybercube initial
design of 200 points is created with the Translational Propaga-
tion (TPLHD) [20]. Sequentially, 50 points are added each iter-
ation. As model type, Least-squares Support Vector Machines
(LS-SVM) [17] optimized with the DIRECT algorithm [18]
were used. Runs were terminated when a RRSE of 0.05 was
reached, or a time limit of 24 hours was reached. Experiments
were repeated ten times to cancel out the effect of random
factors in the SUMO toolbox (for instance, in hyperparameter
optimization). Next to the mean sample size, Table III also
shows the 95% confidence intervals.
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Fig. 5. Average runtime of the FLOLA, LOLA and Voronoi components.

Not a single run using the model error sequential design
managed to reach the target accuracy within the time limit.

TABLE III. SAMPLE SIZES REQUIRED TO REACH A RRSE OF 0.05 FOR
A 4D LEVY FUNCTION.

METHOD RESULT
FLOLA-VORONOI 4715 (4625, 4804)
LOLA-VORONOI 4975 (4867, 5083)
VORONOI 5075 (4967, 5183)
MODEL ERROR > 7878
RANDOM 7770 (7497, 8042)

On average, the runs were halted after 7878 samples, with
an average accuracy of 0.08. This is very poor: even ran-
dom sampling performs better. For random sampling, three
runs did not complete because they exceeded the available
time. These runs were not repeated but excluded, resulting
in wider confidence intervals. The best results are obtained
with FLOLA-Voronoi, which scores slightly better compared
to its predecessor. Compared to only using Voronoi there is a
difference in number of samples, but it is not very explicit
as the Levy function does not feature strong non-linearity.
However the FLOLA component of the algorithm is faster
than Voronoi itself as shown in Fig. 5, and a lot faster than
LOLA. Even in high-dimensional cases, including FLOLA as
exploitation component can improve the modeling results at a
small cost, which is not the case for the LOLA algorithm.

V. CONCLUSION

The proposed Fuzzy gradient estimation method greatly
enhances the LOLA algorithm towards much faster sample se-
lection with the FLOLA-Voronoi algorithm, without affecting
the quality. Numerical experiments show the amount of sam-
ples required to reach the target accuracy remains equivalent or
better, which is considerably less compared to other sequential
design methods used in this study. For a medium-dimensional
problem the difference in runtime between the old and new
approach is significant, because the original gradient estimation
method in LOLA has an exponential complexity in terms
of the dimensionality. This motivates our choice to further
investigate FLOLA-Voronoi for global surrogate modeling of
high-dimensional problems.

In further work, different methods for automatically adapt-
ing the α parameter will be investigated. Furthermore the
current algorithm chooses a new candidate in the neighbour-
hood of the samples highest ranked by the FLOLA-Voronoi
algorithm based on the maximum minimum distance to other
samples. Better options to improve this local space-fillingness
will be investigated as well.
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