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Abstract—A novel approach is presented to perform stochastic
variability analysis of nonlinear systems. The versatility of the
method makes it suitable for the analysis of complex nonlinear
electronic systems. The proposed technique is a variation-aware
extension of the Transfer Function Trajectory method by means of
the Polynomial Chaos expansion. The accuracy with respect to the
classical Monte Carlo analysis is verified by means of a relevant
numerical example showing a simulation speedup of 1777 x.

Index Terms—Nonlinear systems, polynomial chaos (PC),
transfer function trajectories (TFTs), variability analysis.

I. INTRODUCTION

HE evaluation of the effects of geometrical or electrical

parameter variability on the performance of modern mi-
crowave components and circuits is fundamental due to the in-
creasing complexity, density, and bandwidth of these circuits
[1], [2]. The Monte Carlo (MC) method is the standard for the
variability analysis due to its accuracy and robustness. It has,
however, the clear limitation of requiring a large number of
simulations. Indeed, the simulation of complex high-speed mi-
crowave components and circuits can be expensive in terms of
both memory and computational time.

A reliable alternative to MC-based approaches is presented
by the Polynomial Chaos (PC) expansion [3]-[8], which de-
scribes a stochastic process as a series of orthogonal polyno-
mials with suitable coefficients. The PC expansion has exten-
sively been applied to the variability analysis of linear systems
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(i.e., lumped-element circuits [9], [10], multiconductor trans-
mission lines [11]-[13], and generic linear multiport systems
[14]). In particular, the contribution [14] demonstrates the accu-
racy and efficiency of the frequency-domain variability analysis
performed while applying the PC expansion to the state-space
description of the linear system under study. However, the ap-
plication of the PC expansion to the variability analysis of non-
linear electronic devices so far has been limited to: 1) specific
types of circuits (namely, oscillators [15] and dc/dc converters
[16]) and 2) the evaluation of the effects of variability of macro-
models embedded in nonlinear circuits [17].

In this paper, a novel method is proposed for the variability
analysis of complex nonlinear systems based on the calculation
of the PC expansion of the Transfer Function Trajectory (TFT)
[18]-[20] model of the system under study, indicated below
as the PC-TFT model. The proposed technique is particularly
suitable to model RF nonlinear circuits thanks to the modeling
power of the parametric vector fitting (VF) algorithm [21]-[23]
employed by the TFT method.

The calculation of the PC-TFT model requires a two-step
process. At first, a discrete number of TFT models is computed
corresponding to a discrete set of samples of time and of geo-
metrical or physical parameters chosen for the variability anal-
ysis. The desired PC-TFT model is then computed using the
linear regression approach [4]. Finally, the variability analysis
of the system is performed accurately and efficiently by using
the PC model of the system’s output, which can directly be ob-
tained from the PC-TFT model by solving a suitable system of
ordinary differential equations (ODEs) using a standard numer-
ical method.

The proposed method offers several advantages: it can be ap-
plied to a broad range of nonlinear circuits thanks to the mod-
eling power of the TFT; it offers the efficiency and accuracy
of the PC method in performing the variability analysis; and it
is suitable for the analysis of complex nonlinear circuits since
a hierarchical approach can be used for the calculation of the
PC-TFT model.

This paper is organized as follows. First, an overview of
the PC theory and of the TFT trajectory method is given in
Sections II and III, respectively. The time-domain stochastic
macromodeling technique is described in Sections IV and
V. A relevant numerical example is presented in Section VI,
validating the proposed technique. Conclusion are summed up
in Section VII.
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II. PRELIMINARIES: PC PROPERTIES

The PC expansion describes a stochastic process in matrix
formY € RY*Y with finite variance [3], [14] as a series of or-
thogonal polynomials g;(£) depending on a vector of normal-
ized random variables ¢ with suitable coefficients @; € RV *V
as [3], [4]

Y =) oipi(8). (1)

=0

In particular, the polynomials in (1) are orthogonal with respect
to a probability measure W (&) with support €2 according to [5]

<w®m&b=4w@w@w®@zmﬁ @)

where a; are positive numbers and 8;; is the Kronecker delta.

The infinite expansion (1) is an exact description of the sto-
chastic process under study, but for practical implementation the
series must be truncated to a limited number of A + 1 basis
functions, leading to the finite PC model

M
Y &) o). 3)
=0

The main advantage of the PC model is the efficient and accurate
representation of the system variability. Indeed, the mean g and
the variance o2 of the stochastic process Y can be expressed as

[4]

B=ap 4
M

o’ = al <pi(6), pil&) > . &)
i=1

Apart from all moments, stochastic functions of Y, such as the
probability density function (PDF) and the cumulative density
function (CDF), can also be computed following standard ana-
lytical formulas or numerical schemes [6].

In the following, a methodology is presented to obtain the
PC model (3) for the case of independent random variables £.
The approaches described in [4], [5], and [7] can be adopted for
correlated random variables.

The orthogonal polynomials in (3) (also referred to as basis
functions) can be computed as product combinations of orthog-
onal polynomials corresponding to each individual random vari-
able &; [4], [7]. Indeed, the global uncertainty PDF is the product
of the PDFs of the single random variables, and the probability
measure W (&) becomes

Z

W) = [[wit&) (6)

i=1

where Z is the number of random variables. Furthermore, it can
be proven that the total number of basis functions M + 1 used
in the PC model (3) is [4]

(Z + P)!

M+1="—7p

Q)
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where P is the highest degree of the polynomials used in the PC
model (3).

Finally, the basis functions can be calculated numerically for
independent random variables with arbitrary PDFs following
the approach described in [5], while for random variables with
specific PDFs, the corresponding basis functions are the poly-
nomials of the Wiener—Askey scheme [8]. For example, in the
uniform PDF case, the basis functions are the Legendre polyno-
mials, while in the Gaussian PDF case, the basis functions are
the Hermite polynomials.

Upon determination of the basis functions, the corresponding
PC coefficients a; fori = 0, ..., M can be computed following
one of the two main methods described in the literature: the
spectral projection and the linear regression technique [4].

For a complete reference on PC theory, the reader is referred
to [3]-[8].

III. PIECEWISE TFT MODELING

We consider nonlinear dynamical systems of order N with a
state-space description that arises when modeling electric cir-
cuits by modified nodal analysis (MNA)

g(z(t) = f(=() + Bu(t) y(t)=CTz(t). (¥

In this paper, z(t) € R¥ is the state vector corresponding to the
node voltages and inductor currents in the circuit and u(t) €
RM: are the inputs to the circuit. g( ) and f(-) € RY*¥ are
matrix-valued functions describing the charges and currents of
nonlinear components. B € RY**: is a constant incidence
matrix, which maps the inputs to the internal nodes of the circuit.
C ¢ RY*M. s the output matrix and y(¢) € R™- denotes the
output variables.

Trajectory piecewise (TPW) methods have proven them-
selves to be state-of-the-art in the field of accurate automated
model generation [24], [25]. Here, the state space is covered
with linear or low-order polynomial snapshots of the nonlinear
system (8). Consequently, the nonlinear matrix functions f( - )
and g(-) are approximated over a significant portion of the
reachability space [24], [26] by a convex combination of affine
functions

fz) = Z wj(x) (A;x + a;)
g(z) =Y w;(z) (Ejz+e;) ©)

J

where A;, I/, are the Jacobians of the linearization around x; =
z(;) and a;, e, are inhomogeneous offset terms. The scalar
function w,(x) performs a weighted interpolation between the
samples such that w;(z;) = 1. The idea of generating a col-
lection of local models has also been used for the design of
gain-scheduled controllers and is referred to as a quasi-linear
parameter-varying (quasi-LPV) representation of the nonlinear
system [26]. For robustness, the samples that are included in
the quasi-LPV model need to cover the reachability space of the
system. In practice, it often suffices to apply typical training sig-
nals with a large amplitude over a frequency range of interest.
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The linearized matrices A;, F5; are large and sparse so pro-
jection-based model-order reduction techniques can be applied
for reducing their complexity to an order R <« N [27], [28].
More recently, the TFT representation was proposed as a scal-
able version of the TPW approach that guarantees global sta-
bility by transforming the linearized samples to the frequency
domain [19]

H(s) = C"(sE; + Aj) " (10)
The above collection of transfer functions H ;(s) is parameter-
ized in the frequency s and the state-space index j = 1,...,T
with T" being the number of state-space samples. The resulting
hyperplane is then approximated along the frequency axis with
R < N fixed poles diag(A) using the parametric VF algorithm
[22], [23]. Due to the nonuniqueness of the frequency-domain
representation, the pole-residue form that is computed by the VF
algorithm has multiple realizations, which are related by simi-
larity transform. For example, the Hammerstein and Wiener re-
alizations, respectively, become

forj=1,...,T (11)

o' (sI - A)'B,,
C, (sl T. (12)

L (sT Z)‘lﬁ., forj=1,...,
The nonlinear functionality of the system approximation is fully
embedded in the residues 7 ;. by fixing the poles of the model
over the entire state space. Moreover, the model is assured to
be bounded-input bounded-output (BIBO) stable using a simple
pole-flipping scheme [22].

In the remainder of this paper, the TFT model (12) is imple-
mented as a multi-channel Wiener system with a linear time-in-
variant block at the input and a nonlinear readout map. In order
to capture strongly nonlinear dynamics, the nonlinear part is
implemented as a piecewise combination of linear functions.
Other nonlinear function approximations of the residues can
be found in [18]-[20]. The time-domain representation of the
Wiener-TFT approximation is found by piecewise integration
of the residues

= A% (1) + Bu(t)

(1)
{?}(t)zzjw( ())(C $()+D) (13)

The constant D is found by comparing the system output to the
output of the model with D = 0. By introducing

C@E) =Y w;@1)C;
i
D (@)=Y w;(&)D, (14)
the model (13) can be written compactly as
Z(t) = A&(t) + Bu(t)
§(t) = C(&)&(t) + D (2) (15)

In the following sections, a variation-aware extension of the
TFT models is developed by means of the PC theory.
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IV. CALCULATION OF THE PC-TFT MODEL

The goal of the proposed contribution is to model the time-do-
main variability of a nonlinear system that depends on a vector
of random variables £. The PC model (3) of the TFT description
(15) of the nonlinear system under study (indicated as PC-TFT)
can be written as

(1) = AZ(t ) —I— Bu(f) s

516 =S4, (C.@E0 + Di@)ee).
In a first step, the TFT model (15) of the system under study is
computed over a discrete set of values of the random variables
¢ and of the state space z(1), indicated as [£,]/, and [z;]T_,,
respectively. The sampling in the state space is dictated by the
training stimuli of the TFT model and does not need to be uni-
form [19], [24], while the samples of the random variables & are
chosen over a regular grid in the stochastic space £2. In partic-
ular, the number K of samples in the stochastic space is chosen
according to

(Z + P)!

K~2(M+1) =22

17)
The TFT samples (12) that correspond to each value of [¢,]5_,
and [z, ]T 1 can be computed as in Section III. However, it is
important to choose the same set of poles for all the TFT sam-
ples (12) computed for all the values of [£,]/<, and [z;]7_,.

Hence, the matrices Aand B ofall the K x T TFT samples cal-
culated are assumed to be constant, since they are independent
from both the time and random variables considered. Further-
more, the stability of the TFT samples computed is guaranteed
by enforcing the stability of the chosen set of poles [22]. There-
fore, we have obtained a TFT model that is parameterized in the
stochastic space and the state space

{()AMU+BM) A
§(1.6) = C(@;,£,)2(t) + D(,.£,)

forr=1,...,Kandj=1,..., T

F mally, the des1red PC- TFT model (16) can be obtained by
computing the corresponding PC models of the matrices C
and D. Once the basis functions are known, as described in
Section II, the PC coefficients of the matrices C and D can be
found following the linear regression approach [4], [14], which
leads to

(18)

Ve, )ac(®;) = Re(%;,€,)
U )ap(x;) = Rp(%;,€,)

(19)
(20)

where the rth row of the matrices ¥~ (,.) and ¥ p(€,.) contains
the multivariate polynomial basis functions ¢; fors = 0,.... M
evaluated in &, forr = 1,.... K multiplied by the 1dent1ty
matrix of the same dimension as the matrix C and D respec-
tively. The corresponding set of values of the matrix 6’ (Z;,€,)
and D(Z;,¢,) forr = 1,...,K and j = 1,...,T are col-
lected in the matrix R¢ (%, €,) and Rp(%;, E, ), respectively.
Finally, ac(Z;) contains the desired PC coefficients C; (%)
and ap(Z;), the PC coefficients lA),( j)fori=10,..., M and
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Fig. 1. Flowchart of the proposed PC-TFT modeling strategy.

j = 1,...,T. Note that the realization technique used to con-
vert a pole-residue model to a state-space form has an influ-
ence on the smoothness of the matrices in (19) and (20) with
respect to the design parameters, and therefore, on the accuracy
of the final PC model [14]. We use a Wiener realization in our
approach.

It is important to notice that the stability of the computed
PC-TFT model (16) is guaranteed if a stable set of poles is used
to obtain the parameterized TFT model (18).

Finally, the proposed method is efficient if the number of
random variables Z is limited, see (17), and if the number of
state samples 7" is not too high, since the total number of TFT
samples to be calculated is K x T'. For example, when consid-
ering Z = 15 random variables with seventh-order PC expan-
sion (P = 7), the total number of TFT models that must be
calculated for each time sample is 341 088, according to (17).

The entire flowchart of the proposed PC-TFT modeling
strategy is summarized in Fig. 1.

V. VARIABILITY ANALYSIS OF NONLINEAR SYSTEMS
THROUGH PC-TFT MODELING

In the following, the efficiency and accuracy of computing the
PC model of the system output, starting from the corresponding
PC-TFT model (16), will be demonstrated. In particular, only
the PC coefficients of the system output y; fori = 0,..., M
must be calculated. Indeed, (16) can be written as a system
of M + 1 independent equations, thanks to the orthogonality
relation (2). Projecting (16) on the basis function ¢, (&) for
p=0,..., M leads to

5,(0) = C,@3(t) + D, (3). 1)
Hence, the PC coefficients of the system output can be calcu-
lated directly from the corresponding PC-TFT model by solving
the following M + 1 independent systems of ODEs:

{?E(t) = Az(t) + Bu(1)

. SN S fort =0,...,.M (22)
y;(t) = Ci(@)z(t) + Dy(%)

using a standard numerical method (e.g., Backward Euler). Note
that the computational cost of solving the system of ODEs (22)
can drastically be reduced by exploiting the parallelism of these
calculations. Finally, to further reduce the computational cost of
solving equation system (22), any numerical method that em-
ploys a nonuniform sampling in the time domain can be used in
such a way as to minimize the total number 7" of time samples
needed, while keeping the overall accuracy. Note that the set
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Fig. 2. Schematic representation of the RF PA circuit.

chosen to solve the system of (22) and is independent from the
particular sampling of the state space used in Section IV to build
the PC-TFT model.

At this point, a PC model of the system output can be calcu-
lated over a discrete set of time samples as

of time samples [tk]{' 1 depends only on the numerical method

M

ORIEDPHCHA(IL

=0

fork=1,...,7. (23)

The value of the PC model (23) can easily be computed for any
time sample £, # t; for k = 1,...,T" with tg < tx < tpv
using a numerical interpolation technique [29], [30].

The proposed methodology has several advantages. Thanks
to the modeling power of the TFT method, it can be applied
to study a broad range of nonlinear systems, including strongly
nonlinear ones, and it offers the efficiency and accuracy of the
PC expansion to determine the time-domain system variability.
For example, stochastic moments like (4) and (5) can be deter-
mined analytically. Furthermore, the stability of the calculated
PC-TFT model can be guaranteed (see Section IV). Finally,
the proposed technique offers a good flexibility in modeling
complex nonlinear systems. Indeed, a hierarchical approach can
be used: complex nonlinear systems can be divided in simpler
blocks that can be modeled separately with the proposed tech-
nique.

VI. NUMERICAL EXAMPLES

The proposed PC-TFT model is demonstrated by modeling
an RF power amplifier (PA) circuit, see Fig. 2. The topology of
the circuit was proposed in [31] and has been implemented as a
netlist description in the 73750 technology for the purpose of
validation of the PC-TFT technique. The circuit was stimulated
by a 2-GHz RF carrier frequency.

For this PA circuit, the analog input signals are the determin-
istic inputs to the model. The stochastic variables are selected
based upon a sensitivity screening of each stochastic variable
occurring in the PA towards the output performance. This pro-
cedure yields two dominant stochastic variables (Z = 2) that
need to be included in the model for this technology, namely,
the variation of the threshold voltages of the input transistors. It
is assumed that the stochastic variables have a normal distribu-
tion, which can be verified experimentally.
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Fig. 3. (top) Time-domain waveforms of the PC circuit modeled with SPICE
and the TFT model for 500 MC samples. (bottom) Difference or error between
the PC-TFT model and the SPICE simulation.

A PC model of the output mapping defined by C' (-),D(-)is
computed using a fifth-order PC expansion (P = 5 for accuracy
reasons). Hence, the corresponding number of basis functions
in the PC-TFT model is M 4 1 = 21, according to (7), which
leads to a minimum number of samples in the stochastic space
equal to K = 2(M + 1) = 42, according to (17). A Wiener
PC-TFT model was computed using a 7 x 7 regular grid of the
two stochastic variables £ in a range between 40 so K =
49 SPICE simulations are required for each of the reference
voltages. All the K initial SPICE simulations are performed
for 1000 time samples. From the MNA data, 49 piecewise TFT
models are computed. The computation of the 49 TFT models
took 778 s including the training simulations. The computation
of the PC model of the output mapping C;( - ), D;(-) in (22)
took 12 s and the PC model (23) of the PA output ¥; took 1.7 s.

The time-domain response of the PA in SPICE and of the
PC-TFT model are given in Fig. 3 for 40001 transient simu-
lations with MC sampling of the process variations that are in-
cluded in the technology data of the foundry. The models were
then simulated in MATLAB and compared with circuit-level
SPICE. All calculations were performed on a 4-GHz dual quad-
core CPU with 12-GB RAM. It can be seen that, despite the
output signal being highly dynamic and showing a strong non-
linear behavior, the model and the original circuit are almost in-
distinguishable. For the sake of clarity, the difference between
both sets of waveforms is also plotted. The maximum difference
never exceeds 0.2 V. The evaluation of the 40001 MC sam-
ples took 4088 s in SPICE and only 2.3 s using the PC-TFT
technique. Hence, a huge simulation speedup of 1777x was
achieved. Note that the SPICE simulations for the MC anal-
ysis are performed using an adaptative time step for accuracy
reasons. Hence, a post-processing step is necessary to be able
to perform the variability analysis via the MC method since the
value and the number of time samples used for each MC run can
be different with respect to the others. Indeed, the values of the
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Fig. 4. Mean i and range p =+ o of the output voltage of the PA circuit. The
black lines are computed using 40 001 MC simulations in SPICE. The red lines
(in the online version) are computed analytically from the PC-TFT model.
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— SPICE
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Fig. 5. (top) Standard deviation & of the output voltage of the PA circuit over
the entire time range. The black lines are computed using 40 001 MC simula-
tions in SPICE. The red lines (in online version) are computed analytically from
the PC-TFT model. (bottom) Difference or error between the PC-TFT model and
the SPICE simulation.

output signal obtained via MC analysis are interpolated over the
1000 time samples used to compute the PC-TFT model. In order
to present a fair comparison, the additional cost of the post-pro-
cessing interpolation phase is not included in the computational
time of the MC analysis.

More importantly, the PC-TFT model provides an analytical
expression to compute stochastic moments, such as the mean /s
and the variance o2 [see (4) and (5)] of the output waveforms.
Hence, the mean and the standard deviation of the waveform at
each time point can be calculated analytically with the PC-TFT
model in 0.06 s.

The effectiveness of this approach is now illustrated by com-
paring the mean x4 and the range ¢+ = o of the output of the PA
using both the 40 001 MC simulations in SPICE and using the
corresponding analytical expressions of the PC-TFT model in
Fig. 4, which has been zoomed in for the sake of visualization.
Next, Fig. 5 shows the comparison of the standard deviation
computed using the 40 001 MC simulations in SPICE and using
the corresponding analytical expressions of the PC-TFT model.
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Fig. 6. CDF of the THD for 40 001 MC samples evaluated with a full SPICE
simulation (black) and with the proposed PC-TFT model (red dashed line in
online version).

When looking at Figs. 4 and 5, it is clear that the analytical ex-
pression is very accurate without the need for a large set of MC
samples; only K = 49 grid samples are required for computing
the PC-TFT model.

An important parameter to measure the performance of the
PA considered is the total harmonic distortion (THD), defined
as the ratio of the root mean square (rms) amplitude of the
higher harmonics and the fundamental harmonic when applying
a2-GHz sinusoidal input signal. The cumulative probability plot
of the THD of the system is given in Fig. 6 for the original
SPICE simulation and the PC-TFT model for 40 001 MC sam-
ples. Both curves are very similar.

VII. CONCLUSION

This paper has presented a novel technique for the efficient
variability analysis of nonlinear systems, such as amplifiers,
comparators, and digital filters. It is based on the use of the PC
expansion applied to the TFT description of the system under
study. The proposed approach can be applied to study a broad
range of nonlinear systems and an hierarchical approach can be
used to reduce the modeling complexity. Finally, the method
allows to perform the variability analysis with good accuracy
and improved efficiency compared to MC analysis. Compar-
isons with the standard MC approach have been performed for a
numerical example, validating the accuracy and efficiency (i.e.,
a simulation speedup of 1777%) of the proposed method.
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