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Abstract—Parameterized reduced order models are important
for the design and analysis of microwave structures and systems.
Quite often, a large set of models (nodes) with respect to a design
parameter variation are uniformly chosen in the parameter
design space, which are subjected to model order reduction
algorithms and interpolated into a multidimensional model.
In order to preserve passivity in the parameterization step,
positive interpolation operators are frequently used. This paper
demonstrates the importance of sequential sampling for selecting
the nodes and building the parameterized models. It is shown that
sequential sampling algorithms can significantly reduce the model
evaluation cost. The present approach is validated by means of
a microstrip example.

I. INTRODUCTION

Sensitivity analysis, design space exploration and opti-

mization of electromagnetic (EM) systems often comes with

a significant computational cost (both in terms of CPU time

and memory usage). In order to make these tasks feasible, it

is worthwhile to build accurate parameterized reduced order

models (PROMs) up-front, starting from a large set of system

equations. These models are characterized by frequency and

several design parameters, such as geometrical or substrate

features.

Over the past years, a lot of research has been carried out

on PROM algorithms [1]–[6]. Well-known techniques like [1],

[2] and the two-directional Arnoldi process (PIMTAP) [3]

are based on transfer function interpolation. They combine

traditional passivity-preserving model order reduction (MOR)

methods with interpolation schemes that are based positive

interpolation operators [4], [5], [7], [8]. Alternatively, one can

resort to state-space matrix interpolation reduced order models

(ROMs) [6]. In both cases, it is possible to obtain accurate

PROMs that are passive over the complete parameter design

space of interest [9].

Most of the PROM techniques are based on the interpolation

of univariate nodal macromodels (also called nodes) which

are a priori sampled over the parameter design space [10],

for example by using rules of thumb that are neither optimal

nor automated. One of the main challenges is to find a

reduced set of nodes that are well-chosen in the parameter

design space, in order to reduce the model evaluation cost

[11]–[14]. In this paper, we show that sequential sampling

techniques can facilitate this step and deliver promising results.

Sequential sampling techniques can be classified into three

main categories, namely input-based methods [15], output-

based methods [13], [16], [17] and model-based methods

[11], [12]. In this paper, an algorithm similar to [18] is used

for selecting the optimal number of nodes with the aim of

generating an accurate PROM. In contrast to the data driven

approach presented in [18], additional nodes are selected by

comparing the reduced model order of the nodes along the

edges of the parameter design space.

The advantages of combining a sequential sampling tech-

nique [18] along with a PROM technique [9] are numerous:

the approach can be applied to multidimensional problems

[19], [20], it is portable to parallel computing platforms and

it reduces the expensive model evaluation time. The sampling

of the parameter design space is fully automated and doesn’t

need to be specified a priori, hereby avoiding undersam-

pling/oversampling. Note that undersampling generates poor

model quality whereas oversampling often results in waste

of computational resources. Finally, it is noted that the local

interpolation ensures that the models are stable and passive.

The paper is organized as follows. In Section II, the

goal statement of parameterized reduced order modeling is

discussed briefly. Section III explains the algorithms for

model order reduction and state-space interpolation of the

nodes. Section IV describes a sequential sampling scheme

that demonstrates how the nodes are selected in the parameter

design space. A microstrip example is presented in Section V.

II. GOAL STATEMENT

Consider a parameterized dynamical system with design

parameters �g = (g(1), ..., g(N)) in descriptor state-space form

E(�g)
dx(t, �g)

dt
= A(�g)x(t, �g) +Bu(t)

y(t, �g) = C(�g)x(t, �g) +Du(t) (1)
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In the sequel the parameter design space, will be denoted

as P(�g). The goal is to build an interpolated PROM that

approximates the large system (1) up to a predefined accuracy

level. As a first step, a sequential sampling algorithm is used

to identify a set of nodes on a multi-rectangular grid in the

parameter design space P(�g), henceforth called the parameter
subspace. These nodes are located at the corner points of

each grid cell and correspond to a ROM that characterizes the

frequency domain behavior at a fixed point in the parameter

design space. Secondly, a parameterization step is introduced

to obtain a PROM that can be evaluated at every test point

in the parameter design space. This paramaterization is per-

formed by picking the corner points of the corresponding cell

and applying local interpolation on the state-space matrices.

Regarding the state-space equations of the system under

study we assume that a fixed discretization mesh is used which

is independent of the specific design parameter values [5].

The size of the system matrices as well as the numbering

of the mesh nodes and mesh edges are preserved. The mesh

is only locally stretched or shrunk when shape parameters

are modified. The matrices B, C are uniquely determined by

the circuit topology and therefore remains constant, while the

matrices E and A are functions of the design parameters.

Starting from a set of models in the design space using

common projection matrices, it is straightforward to prove that

all the reduced system matrices in the estimation grid are in

the same parameter subspace and hence can be interpolated.

III. PARAMETERIZED MODEL ORDER REDUCTION

A. Model Order Reduction

Assuming that a set of M nodes are given, which represent

the corner points of a multi-rectangular cell in the parameter

design space. In order to interpolate the system response at

arbitrary locations inside the cell, a ROM with common model

order must be computed for each node. As a first step, a

ROM is computed for each node using Krylov-based model

order reduction [7], [8] techniques, in our case Laguerre-SVD

method [8]. The reduced order of each node qi can be found

by computing the ratio of each Hankel singular value σv with

respect to the largest singular value σmax and truncating values

to zero below a given threshold:

σv

σmax
≥ thresholdσ , v = 1, 2, ..., qi (2)

The choice of the threshold is chosen as a function of the

desired accuracy for each ROM. Note that the Hankel singular

values quantify the reachability and observability of a system

and can be computed by using the command hsvd in Matlab

Control System toolbox. After computing the projection ma-

trices for each ROM at the corner points, a common compact

projection matrix is found by merging all the columns into a

compound matrix [9] :

Punion = [P1, P2, .....PM ] (3)

The dimension of Punion is n×w where n is the order of the

system and w = (q1 + q2... + qM ). Next, the economy-size

SVD is computed for the union of the projection matrices

UΣV′ = svd(Punion)

A common reduced order r for each node is found by retaining

the r most significant singular values as in (2). A common

n× r projection matrix Qcomm is obtained as follows:

Qcomm = U(:, 1 : r)

The congruence transformation using Qcomm, on the original

models of the design space then yields the reduced system

matrices for all nodes in the specific cell.

B. Parameterization by Passive Interpolation

In order to obtain a PROM that facilitates the interpolation

at an arbitrary position inside the cell, it is possible to

apply positive interpolation operators [4] (e.g., multilinear or

simplicial methods [21]). Such interpolation schemes have

been used extensively in [4], [9] to build stable and passive

PROMs. In this paper, multilinear interpolation is applied to

the individual state-space matrices (represented by the generic

variable J)

J(g(1), ..., g(N)) =
∑K1

k1=1
· · ·

∑KN

kN=1
J
(g

(1)

k1
,...,g

(N)

kN
)

lk1
(g(1)) · · · lkN

(g(N)) (4)

Here Ki represents the number of estimation points and

lki
(g(i)) are the usual piecewise linear interpolation kernels

satisfying

0 ≤ lki
(g(i)) ≤ 1,

lki
(g(i)) = δki,i

Ki∑

k=1

lki
(g(i)) = 1 (5)

It is important that stability and passivity are guaranteed when

a transient analysis is to be performed. It is known that, while

a passive system is also stable, the reverse is not necessarily

true [22]. Hence the passivity requirement is crucial when the

model is to be utilized in a time-domain simulator with drivers

and receivers. It is shown in [23] that the passivity of the

ROMs is guaranteed if the original models are in the MNA

form (1) and if the following conditions are satisfied:

E = E′ ≥ 0

A+A′ ≥ 0

B = C′ (6)

For this specific descriptor format, the proposed PROM

method guarantees the passivity of the ROMs over the estima-

tion grid using Laguerre-SVD by congruence transformations

using the common projection matrix Q :comm

Er(�g) = Qcomm
′E(�g)Qcomm ≥ 0

Ar(�g) = Qcomm
′A(�g)Qcomm ≥ 0

Br(�g) = Qcomm
′B(�g)

Cr(�g) = C(�g)Qcomm (7)
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Fig. 1. Division of the design space.

Since any nonnegative linear combination of positive semidef-

inite matrices is positive semidefinite, stability and passivity

are preserved over the entire parameter design space. This is

the case when positive interpolation operators are used.

IV. SEQUENTIAL SAMPLING

The division of the parameter design space into multi-

rectangular cells is implemented using a sequential sampling

algorithm. Based on differences in the reduced order of each

ROM, it is possible to identify the edge of the cell that

corresponds to the most dynamic parameter. By selecting

additional nodes at the midpoint of that edge, the parameter

design space is recursively divided into 2 halves (i.e. 2 smaller

subspaces). If the deviation between the original system and

the PROM is too large, then the procedure is repeated. Note

that this is a key difference with the approach in [18], where

the segmentation of the parameter design space is based

uniquely on the difference in system responses and the division

is performed at the geometric center.

As an example, consider a bivariate case with parameter

vector �g = (g(1), g(2)) as shown in Fig. 1-a, where the four

initial nodes are marked by �gij = (g
(1)
i , g

(2)
j ); i, j = 1, 2.

Consider any corner point in the parameter subspace and esti-

mate the reduced order at the corner point and its immediate

neighbors in other words, the reduced order has to be estimated

for N + 1 points in the parameter subspace, as shown in Fig.

1-b where �g11 is considered and its immediate neighboring

points are [�g12, �g21]. Next the difference between the reduced

orders over each edge is computed, and the PROM is evaluated

at the midpoint of the most dynamic edge. At this test node,

the difference between the interpolated response of the PROM

and the original model is calculated. If the deviation is too

large, then the parameter subspace is further divided into two

child subspaces along that edge and that procedure is repeated

recursively, as shown in Fig. 1-c and Fig.1-d. If the differences

across the edges are the same then we can randomly select

an edge. Otherwise, if the deviation is sufficiently small and

all subspaces are covered, then the algorithm terminates. A

flowchart is shown in Fig. 2.

Fig. 2. Flowchart of sequential sampling algorithm.

Fig. 3. Layout of five coupled microstrip.

V. EXAMPLE : FIVE COUPLED MICROSTRIPS

As an example, five coupled microstrips are considered,

where the spacing S between the lines and the length L of the

lines are chosen as design parameters in addition to frequency

(see Fig. 3). Table I shows the ranges of the parameters and

the number of frequency samples Ns is 120.

The order of the initial system is 1200. Here, the mean

absolute error (MAE) is used as a measure to assess the

accuracy of the ROM and −60 dB is used as a target value. If

Pin denotes the number of input ports and Pout denotes the

number of output ports, then the MAE between the original

frequency response Hi,j and the ROM Ri,j is calculated as

Proc. of the 2013 International Symposium on Electromagnetic Compatibility (EMC Europe 2013), Brugge, Belgium, September 2-6, 2013

344



TABLE I
PARAMETERS OF COUPLED MICROSTRIPS

Parameter Min Max

Frequency (freq) 0 GHz 5 GHz
Length (L) 5 mm 15 mm
Spacing (S) 0.04 mm 0.1 mm

Fig. 4. Hankel singular values of a node.

follows

EMAE(�g) =

∑Pin

i=1

∑Pout

j=1

∑Ns

k=1 |Ri,j(sk, �g)−Hi,j(sk, �g)|
PinPoutNs

.

(8)

As described in Section III-A, a reduced order of 38 is

estimated at the corner point of the parameter design space

for L = 5 mm and S = 0.04 mm by truncating the Hankel

singular values as shown in Fig. 4. Similarly, the reduced order

is estimated for the immediate neighbors of the considered

parameter design space and is found to be 44 for L = 5 mm

and S = 0.1 mm and 56 for L = 15 mm and S = 0.04.

Additional nodes in the design space are selected by the

sequential sampling algorithm (see Section IV) and the PROM

is generated using multilinear interpolation (see Section III-B).

Fig. 5 shows the final result, with as outcome 172 nodes spread

in an adaptive non-uniform way. Based on the distribution of

the nodes, it can be inferred that S-parameters corresponding

to designs with small spacing S and large length L are

changing more rapidly. As an illustration, Fig. 6 visualizes

the magnitude S18(L, S) for varying L and S = 0.045 mm.

Similarly, in Fig. 7 the magnitude of S16 is shown for varying

S with L = 12.8 mm. In both cases, we see that designs with

a more resonant-like frequency response are effectively more

densely sampled.

To validate goodness of fit of the node distribution, the result

is compared to a PROM that is build using the same (slightly

larger) number of nodes simulated over a classical uniform

sampling (e.g., a uniform 14 × 14 grid). The response of the

PROMs is evaluated and compared for three validation points,

marked by asterisks in Fig. 5.

Table II shows a comparison of the MAE over all frequen-

Fig. 5. Sequentially sampled design space (validation points marked as ∗)

Fig. 6. Magnitude bivariate PROM S18(L, S) for S = 0.045 mm.

cies at each validation point. It is clear that the accuracy in

the sequential non-uniform case is significantly better than in

the uniform case. As a final illustration it can be seen from

Fig. 8 that the response of the reduced order model over the

sequentially sampled parameter space has a better accuracy

than in the uniformly sampled parameter design space case

when compared to the original system.

VI. CONCLUSIONS

The importance of sequential sampling for building pa-

rameterized reduced order models has been demonstrated in

this paper. The model is obtained by combining a sequential

sampling algorithm that recursively divides the parameter

subspace by picking nodes along the most dynamical edge

with a local matrix interpolation method. It is shown that an
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Fig. 7. Magnitude bivariate PROM S16(L, S) for L = 12.8 mm.

TABLE II
COMPARISON OF MEAN ABSOLUTE ERROR

L (mm) S (mm) Uniform (dB) Sequential (dB)

8.1 0.090 -66.04 -68.06
11.7 0.070 -56.51 -65.12
14.3 0.045 -43.91 -62.87

accurate PROM is obtained, while avoiding undersampling or

oversampling of the parameter space. The present approach is

validated with an example and several numerical results. Due

to the curse of dimensionality with the increase in number

of parameters, sampling using scattered techniques is being

studied.
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