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ExposureAssessmentofMobilePhoneBase
StationRadiationinanOutdoorEnvironment

UsingSequential SurrogateModeling

SamAerts,* DirkDeschrijver,Wout Joseph,LeenVerloock,FrancisGoeminne,LucMartens, and TomDhaene
Department of InformationTechnology,GhentUniversity/iMinds, Ghent, Belgium

Human exposure to background radiofrequency electromagnetic fields (RF-EMF) has been in-
creasing with the introduction of new technologies. There is a definite need for the quantification
of RF-EMF exposure but a robust exposure assessment is not yet possible, mainly due to the lack
of a fast and efficient measurement procedure. In this article, a new procedure is proposed for
accurately mapping the exposure to base station radiation in an outdoor environment based on
surrogate modeling and sequential design, an entirely new approach in the domain of dosimetry
for human RF exposure. We tested our procedure in an urban area of about 0.04 km2 for Global
System for Mobile Communications (GSM) technology at 900 MHz (GSM900) using a personal
exposimeter. Fifty measurement locations were sufficient to obtain a coarse street exposure map,
locating regions of high and low exposure; 70 measurement locations were sufficient to character-
ize the electric field distribution in the area and build an accurate predictive interpolation model.
Hence, accurate GSM900 downlink outdoor exposure maps (for use in, e.g., governmental risk
communication and epidemiological studies) are developed by combining the proven efficiency of
sequential design with the speed of exposimeter measurements and their ease of handling.
Bioelectromagnetics 34:300–311, 2013. � 2013 Wiley Periodicals, Inc.
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INTRODUCTION

Nowadays, a person is almost constantly ex-
posed to radiofrequency electromagnetic fields (RF-
EMF) emitted by one or more numerous possible
sources. The World Health Organization (WHO) re-
cently listed in its RF Research Agenda the need for
the quantification of the exposure to widespread
(e.g., Global System for Mobile Communications
(GSM), Universal Mobile Telecommunications Sys-
tem (UMTS)) as well as emerging (e.g., Long Term
Evolution (LTE)) RF sources [WHO, 2010]. This in-
formation is valuable for both epidemiological re-
search and governmental risk communication toward
the general public.

RF-EMF measurements can be divided in two
categories—broadband and spectral measurements.
Broadband measurements are performed with a com-
bination of a field meter and a broadband probe and
involve measuring over a span of several GHz at
once. Spectral measurements, on the other hand, in-
volve band-specific measurements and can be per-
formed using two different types of measurement
devices—spectrum analyzers (SAs) and personal ex-
posure meters (exposimeters). Using these three

types of devices, previous attempts have been aimed
at geostatistical exposure prediction models (theoreti-
cal models), relying heavily on base station param-
eters, using exposimeter [Breckenkamp et al., 2008;
Bürgi et al., 2008, 2010; Isselmou et al., 2008; Frei
et al., 2009b] or SA measurements [Neitzke et al.,
2007; Elliott et al., 2010; Joseph et al., 2012a] for
optimization and validation, as well as measurement
models interpolating exposimeter [Azpurua and Dos
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Ramos, 2010] or broadband measurements [Paniagua
et al., 2012] at randomly or uniformly chosen
locations.

However, a robust measurement-based RF-EMF
assessment is not yet possible in a real-world situa-
tion, as the necessary time-expensive measurements
cannot yet be made under a wide range of typical
operating conditions. Therefore, only a limited data
set of measured exposure samples is available at a
given time. It is of great interest for authorities, for
example, if a model of the RF-EMF exposure in a
certain outdoor environment could be built that
would allow them to obtain an accurate estimation
of the human exposure in that specific area, despite
the incomplete set of measurements and limited
accuracy.

With this purpose in mind, we propose an en-
tirely new modeling approach in the domain of do-
simetry for human RF exposure based on surrogate
modeling and sequential design. A surrogate model
is a compact model that is calculated to provide an
analytical mapping between the geographic coordi-
nates and the RF-EMF exposure. In order to build
such a model, one only needs data samples at a limit-
ed set of key locations in the analyzed area, chosen
as optimally as possible using a sequential design ap-
proach. Starting from a small initial number of mea-
surement locations, the next locations are iteratively
selected using a sequential design algorithm based on
variation in the measurement data and overall cover-
age of the area [Crombecq et al., 2011].

The advantages over the previously mentioned
studies are the complete independency on accurate
base station operating parameters, and the iterative se-
lection of measurement locations instead of a random
or uniform distribution. Performing measurements at
uniformly distributed locations is essentially a one-
shot approach [Crombecq et al., 2011], meaning that
the resulting model is based only on data gathered at
points that were fixed all at once. The advantage of
using a sequential design approach is that more meas-
urements will be performed in those areas where the
RF-EMF fields change more rapidly (because these
areas are usually more difficult to approximate with
limited samples), using only as many measurements
as needed to obtain a desired accuracy (this is prefer-
able to choosing a fixed uniform distribution of mea-
surement locations, for which the resulting accuracy
of the model will be unpredictable).

The objective of this article is thus to conceptu-
alize a new methodology to obtain an accurate street
environment, RF-EMF exposure assessment as effi-
ciently as possible, enabling one to accurately
map the exposure to the RF-EMF without being

dependent on accurate base station parameters. This
approach can be performed while ‘‘in the field,’’ with
new measurement locations being advised based on
the obtained results.

MATERIALS AND METHODS

Area

The area under study is shown in Figure 1. It is
a small (0.04 km2) urban area in Ghent, Belgium.
Using an SA and a conical dipole antenna, we per-
formed a spectral survey to identify the dominant sig-
nals in the area. Consistent with the findings of Joseph
et al. [2008], the downlink of GSM900 was found to
be the dominant signal and it is the only signal con-
sidered in this study. There was one GSM900 base
station inside the area and many close by.

Measurement Devices and Methods

As we will be focusing on one signal only, we
had the choice between exposimeter or SA measure-
ments. Both have their advantages and disadvan-
tages and have been used extensively in RF-EMF
exposure assessment studies [Joseph et al., 2008,
2010a, 2012a].

Fig. 1. Area under study with dimensions and all 100 measure-
ment locations:10 from the initial design (open circles), 90 select-
ed with the LOLA-Voronoi algorithm (black-dot circles), 31 SA
validation measurements (diamonds), and 30 exposimeter vali-
dationmeasurements (stars).
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For in situ measurements of the EMF strength
related to human exposure in the vicinity of base sta-
tions with an SA, a standard has been written by the
European Committee for Electrotechnical Standardi-
zation (CENELEC) [CENELEC, 2008], and proce-
dures for RF exposure measurements in the vicinity
of GSM base stations are available in Joseph et al.
[2006], Olivier and Martens [2007], and Kim et al.
[2008].

Commercial personal RF exposimeters, on the
other hand, have been developed in the past years spe-
cifically for epidemiological studies. They are easy to
carry and use, and they are able to measure over a
long period of time. For current state-of-the-art
exposimeters, we refer the reader to Mann [2010] and
Röösli et al. [2010]. A vast amount of research on the
feasibility of performing epidemiological studies with
exposimeters and their limitations has been published
[Mann et al., 2005; Radon et al., 2006; Neubauer
et al., 2007], and measurement campaigns and their
results have been presented [Joseph et al., 2008,
2010b; Röösli et al., 2008; Thomas et al., 2008a,b;
Frei et al., 2009a; Viel et al., 2009]. While not as ac-
curate as the SA, we chose to perform all measure-
ments for model building with a DSP120 EME SPY
exposimeter (Satimo, Villebon-sur-Yvette, France) be-
cause of its measurement speed (the minimum acqui-
sition time is 4 s per sample) and ease of handling.
This exposimeter can measure 12 frequency bands
(88–108 MHz, 174–223 MHz,308–400 MHz, 470–
830 MHz, 880–915 MHz, 925–960 MHz (GSM900),
1710–1785 MHz, 1805–1880 MHz, 1880–1900 MHz,
1920–1980 MHz, 2110–2170 MHz, 2400–2500 MHz)
and identify the contribution of each band to the total
electric field. Its lower and upper detection limits are
0.05 and 5 V/m, respectively. Its expanded measure-
ment uncertainty (confidence interval (CI) 95%) for
GSM900 is 4.6 dB [Bolte et al., 2011] without taking
into account possible influences of the body.

The exposimeter measurement method we pro-
pose resembles the sweeping method sometimes ap-
plied to SA measurements [Neubauer et al., 2005;
Bornkessel et al., 2007]. The exposimeter is placed
inside a backpack and the operator walks around ran-
domly in an area of about 10 m2 for 3.5 min. This
way, with a minimum acquisition time of 4 s per
sample, 50 samples are obtained, which should be
sufficient to limit time variations as well as account
for small-scale fading in the measurement area. The
average electric field strength is then calculated as
the root mean square (RMS) of these samples. Note
that measuring the average electric field strength in a
small area corresponds with a more realistic exposure
scenario than a measurement at one specific location.

A number of articles have measured the response
of an exposimeter to standard input signals in a
laboratory and discussed the ability of the exposime-
ter to accurately measure base station radiation
[Mann et al., 2005; Radon et al., 2006; Knafl et al.,
2008; Bornkessel et al., 2010; Bolte et al., 2011].

We also performed SA validation measure-
ments, for which the setup consisted of a Precision
Conical Dipole (PCD) 8250 antenna (Austrian
Research Centers (ARC) Seibersdorf Research, Sei-
bersdorf, Austria), with a dynamic range of 1.1 mV/
m–100 V/m and a frequency range of 80 MHz–
3 GHz, in combination with an SA with a frequency
range of 9 kHz–6 GHz (Model FSL6, Rhode &
Schwarz, Zaventem, Belgium). We opted for the
RMS mode, with a sweep time (SWT) of 300 ms per
trace, and calculated the average of the traces over
0.5 min in W/m2 before converting it to V/m. The
expanded measurement uncertainty (CI 95%) for the
electric field for the considered setup is �3 dB
[CENELEC, 2008]. The antenna is positioned at
1.5 m above the ground [CENELEC, 2008]. For each
frequency band, the three mutually orthogonal com-
ponents of the electric field are measured during
a time (several min) until the signal stabilizes,
resulting in a total measurement time of more than
15 min per location (considering only a single signal,
i.e., GSM900).

In order to ascertain the validity of the use of
SA measurements as validation, we compared the
two measurement methods at 10 random locations in
our study area, the results of which are shown in
Table 1. The average error is defined as:

average error ¼ 1

10

X10

I¼1

ESA;i � Eexp;i

ESA;i

����
����ð%Þ (1)

with ESA,i and Eexp,i the electric field strength
measured with the SA and exposimeter method, re-
spectively, at location i (i ¼ 1, . . . ,10). On average,

TABLE 1. Summary of the Comparison Between SA and
Exposimeter Measurements of the Electric Field Strength of
GSM900 Radiation at 10 Random Locations in Our Study
Area

Spectrum analyzer Exposimeter

Average E (V/m) 0.216 0.162
Maximum E (V/m) 0.356 0.234
95th percentile E (V/m) 0.331 0.234
Standard deviation (V/m) 0.090 0.058
Average error (vs. SA) — 19.28% (1.53 dB)

All measured values satisfy ICNIRP reference levels.

302 Aertsetal.

Bioelectromagnetics



we found a relative error of 19%, corresponding to a
1.5 dB difference.

Surrogate Modeling

Surrogate models using a sequential design
algorithm as an optimal sample selection strategy
offer a key advantage over models created from a
random or uniform sample distribution. Sequential
sampling methods start from a limited set of meas-
urements and determine the optimal location of
additional measurements in an automated way
[Crombecq et al., 2011; Stephens et al., 2011]. In
this study, the algorithm ‘‘learns’’ the EMF expo-
sure on the fly, based on the knowledge that
becomes available from the previous measurements,
and sequentially proposes optimal locations that
must be performed for future measurements. At any
moment in time, the gain of these additional meas-
urements—a quantification of how much informa-
tion is added to the model—can be assessed, and a
well-chosen stopping criterion can be defined to de-
tect convergence of the algorithm. It should be not-
ed that such an approach significantly limits the
time to perform measurements [Deschrijver et al.,
2011, 2012].

A sequential design always represents a trade-
off between exploration and exploitation, with the
former selecting data points in unexplored regions
and the latter suggesting points in regions previously
identified as interesting, that is, peaks and valleys.
The robust and efficient hybrid sequential design al-
gorithm developed by Crombecq et al. [2011]
employs Voronoi tessellation for exploration and lo-
cal linear approximation (LOLA) for exploitation. A
Voronoi tessellation divides the area into multiple po-
lygonal cells generated by the selected measurements
locations. Each cell consists of those points that are
closer to one measurement location (i.e., the one that
generated the cell) than any other point. The algo-
rithm then distributes more data points in the larger
cells, as far as possible from the previously chosen
locations. LOLA, on the other hand, distributes the
data points such that the density of the points is pro-
portional to the local nonlinearity of the approxima-
tion function (in this case, the interpolation model),
because dynamic regions are more difficult to ap-
proximate than linear regions. This dual strategy
(combined using a weight function) results in a more
efficient distribution of measurement locations com-
pared to other traditional designs, such as uniform or
random distributions used by Azpurua and Dos
Ramos [2010], Joseph et al. [2012a], and Paniagua
et al. [2012], for example. As an interpolation tech-
nique, we use cubic splines, which are smooth

interpolating functions piecewise-defined by third
degree polynomials

Measurement Procedure

We developed the following procedure for the
experimental assessment and modeling of EMF expo-
sure in a realistic outdoor environment (see Fig. 5 in
the Online Supplementary Material for the flow-
chart). Step 1: Characterize the area; that is, deter-
mine the two-dimensional geo-coordinates of the
area edges and building blocks (all measurements are
performed on the street so the algorithm should only
select locations there), and perform a spectral survey
with the SA in the area to find the dominant signals.
Step 2: Let the surrogate-model algorithm calculate
an initial design (i ¼ 0) of measurement locations in
a Latin hypercube configuration (the number of loca-
tions is set by the user of the procedure) [Crombecq
et al., 2011]. A Latin hypercube is a space-filling de-
sign that chooses the initial measurement locations in
such a way that the area of interest is covered as
evenly as possible. Step 3: Perform electric field
measurements (of the dominant signal) at the select-
ed locations using the exposimeter measurement
method described above, update the surrogate model
(from Model Mi�1 to Model Mi, with i the number of
the iteration, e.g., i ¼ 0 is the initial design, i ¼ 1 is
the first iteration, etc.) and calculate the mean rela-
tive deviation of the updated Model Mi compared to
the previous version Mi�1, or in other words, the
mean relative change of the surrogate model, using
the formula:

DðMi;Mi�1Þð%Þ

¼ 1

M

XN

j¼1

EMi
ðjÞ � EMi�1

ðjÞ
EMi�1

ðjÞ
����

����� 100% (2)

with EMi
ðjÞ the electric field values of Model Mi at

all N grid points (j) of the surface of the considered
area (i.e., the streets in the demarcated area), with
a resolution of 1 � 1 m2. Step 4: Use the LOLA-
Voronoi algorithm in the ‘‘surrogate-model toolbox’’
(SUMO) [Gorissen et al., 2010] to calculate a new
batch of sample locations (the number of locations in
each batch is set by the user of the procedure). It
should be noted that the use of batches is a practical
choice, and the number of locations per batch is a
trade-off based on the measurement and processing
time of a batch. In this study, we performed 100
measurements with each batch consisting of ten loca-
tions, resulting in ten consecutive models (M0 to M9).
The measurements performed at the 10 locations giv-
en by the initial design result in Model M0. Based on
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these measurements, the next batch of ten locations
is calculated in real-time with the LOLA-Voronoi al-
gorithm. Measurements performed at these locations
are then used to update the surrogate model, result-
ing in Model M1 (which is thus constructed from
20 samples) and so on. Repeat Steps 3 and 4 until a
certain stopping criterion x is reached, for example, a
certain value for D. In this study, the stopping criteri-
on was a mean relative deviation D(Mi, Mi�1) of 1%.
Step 5: Validate the final model. Step 6: The result is
an accurate map of the RF exposure in a certain area.
This procedure is developed in such a way that it can
be applied in situ; that is, one performs measure-
ments, the results are processed using Matlab, new
locations are provided by the algorithm and shown in
Google Earth, etc., while in the field.

Validation

After the construction of ten consecutive mod-
els, we validate them with two different sets of meas-
urements—SA and exposimeter measurements. The
results of this validation help us quantify the correla-
tion between model and measurements and find an
optimal number of samples to accurately characterize
an area of this size.

The first validation set consists of 31 accurate
narrowband measurements performed at randomly
selected locations, different from the 100 measure-
ment locations used to construct Models M0 to M9.
A second validation set comprises 30 exposimeter
measurements using the method described above,
performed at random locations chosen independently
from the procedure above. Figure 1 shows the loca-
tions of these validation measurements.

We define the relative error (in % and dB) of a
measurement-prediction pair k (REk, k ¼ 1, . . . ,n,
with n the number of validation measurements) as:

REkð%Þ ¼ Fk � Ek

Ek

����
����� 100% (4)

REkðdBÞ ¼ 20� log10
Fk

Ek

����
���� (5)

with F the set of modeled electric field values, and
E the set of measured values. For each model we
consider the mean (MRE), 95th percentile (RE95)
and maximum (REmax) of the relative errors REk of
the exposimeter (n ¼ 30) and SA (n ¼ 31) measure-
ments as error metrics, as well as the percentage of
REk above 3 dB (factor

ffiffiffi
2

p
in electric field strength).

To quantify the correlation between model and
validation sets, we use the following correlation

parameters: r, the Pearson correlation coefficient; rs,
Spearman’s rank correlation coefficient; k, Cohen’s
kappa; sensitivity; and specificity. The sensitivity
is the ratio of the number of correctly identified
exposed samples to the total number of measured ex-
posed samples. The specificity is the ratio of the
number of correctly identified unexposed samples to
the total number of measured unexposed samples. A
certain sample is classified as ‘‘exposed’’ when it lies
above a certain percentile or a fixed field value, while
‘‘unexposed’’ means that the sample lies below a cer-
tain percentile. In this article, we used the 80th per-
centiles as cut-off values. It should be noted that the
90th percentile is often used [Breckenkamp et al.,
2008; Frei et al., 2009b] but with validation sets of
30 measurements we would only have three samples
above this cut-off, rendering any statistical conclu-
sion useless. Also, Bürgi et al. [2008] used tertiles as
cut-offs but a 66th percentile cannot be considered
as high exposure.

A model used for epidemiological studies
should have a high specificity [Neubauer et al., 2007]
since a low specificity value would mean that a large
part of the small exposed group is actually unex-
posed. In the case of a low sensitivity, only a small
fraction of the much larger unexposed group is in
fact exposed.

Cohen’s kappa is a statistical measure of the
agreement between two data sets, taking into account
the agreement occurring by chance. It represents the
fraction of samples that are expected not to be in
agreement (as in ‘‘fall in the same exposure catego-
ry’’) when only chance agreement would be present,
but, in fact, are in agreement. For the calculation
of this value, we use the 50th and 80th percentiles
of the predicted and measured electric field values
as cut-offs. Note that sometimes a weighed kappa is
calculated (e.g., in Bürgi et al. [2010]; see also
Table 3), whereas classification into adjacent catego-
ries (i.e., high–medium and medium–low exposure)
counts as 50% agreement. All kappa values in this
article are non-weighted, unless stated differently.

RESULTS

Surrogate Modeling

Figure 1 shows all 100 measurement locations
used to calculate the GSM900 exposure interpolation
Models M0 to M9 (10–100 measurement locations).
The contour plots of Models M0 (10 samples), M4

(50 samples), M6 (70 samples), and M9 (100 sam-
ples) are shown in Figure 2a–d, respectively. Table 2
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Fig. 2. Contour plots of Models (a) M0; (b) M4; (c) M6; and (d) M9. Axes are in Belgian Lambert
1972 coordinates; that is, a projection of geographic coordinates determined using the Hayford
1924 ellipsoid.

TABLE 2. Electric Field Parameters (Mean, Standard Deviation, Minimum–Maximum Range, and 95th Percentile) of the
Consecutive Interpolation Models and the Mean Relative Deviations of One Model Compared to the Previous One

Model Eavg (V/m) STD (V/m) Emin � Emax (V/m) E95 (V/m) D(Mi,Mi�1) (%)

M0 0.142 0.078 0.075–0.195 0.167 —
M1 0.151 0.077 0.080–0.197 0.173 8.41
M2 0.163 0.112 0.062–0.268 0.231 11.88
M3 0.182 0.147 0.071–0.345 0.287 15.57
M4 0.187 0.152 0.070–0.360 0.295 5.21
M5 0.182 0.142 0.070–0.359 0.271 3.20
M6 0.180 0.142 0.069–0.360 0.270 3.06
M7 0.181 0.140 0.069–0.361 0.268 2.31
M8 0.182 0.141 0.070–0.386 0.268 1.56
M9 0.182 0.141 0.070–0.384 0.268 1.20

Eavg, average electric field strength; STD, standard deviation; Emin and Emax ¼ minimum and maximum electric field strengths,
respectively, and E95 ¼ 95th percentile of the electric field strength of a certain model. D(Mi,Mi�1) is the mean relative change of the
surrogate model according to Equation (1). All measured values satisfy ICNIRP reference levels.
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summarizes the model parameters (average electric
field strength, Eavg, recalculated from the average
power density; 95th percentile of the electric field
values, E95; range of minimum to maximum electric
field strengths, Emin � Emax; and standard deviation
(STD) of the power density value, recalculated to
electric field values) of M0 to M9, as well as the
mean relative deviation (Eq. 2) of each Model Mi

compared to the previous Model Mi�1. For example,
by measuring at 10 additional locations, our surro-
gate model changed 15.57% going from Model M2

(30 points) to Model M3 (40 points).
Models M0 and M1 show a relatively constant

electric field distribution with only slight variation.
In Models M2 to M4, four hotspots are identified
(defined as regions with electric field levels
above 0.25 V/m in Fig. 2), each significantly
changing the model and none are found in subse-
quent models. Once the main variations in the field
are discovered in Model M4, the mean relative
model change drops below 5% and the statistical
parameters of the electric field in the area under
study stay relatively constant; the average electric
field strength in the streets is 0.18 V/m, with a
standard deviation of 0.14 V/m, min–max interval
of 0.07–0.36 V/m and 95th percentile of 0.27 V/m.
In the models following Model M4, the exposure
map is further refined and after 70 measure-
ments (Model M6), the model change drops
below 2.5%.

Validation

The results of the validation with both SA as
well as exposimeter measurements can be found
in the online version of this article (Tables 4 and
5 contain the error metrics and correlation coeffi-
cients, respectively; Online Supplementary Material).
Figures 3 (exposimeter validation) and 4 (SA valida-
tion) show a comparison between the measurements
and the predictions of Models M0, M4, M6, and M9,
and the cumulative distribution function (cdf) of the
relative error (RE) in dB. It is clear from the scatter
plots in Figures 3a and 4a that there are not many
large errors (i.e., above 3 dB), not even for the first
models, although the electric field distribution in
the area under study is not spread wide enough for
a definite conclusion. The cdfs of the RE in
Figures 3b and 4b show the steady offset to the left
of the early models, and from Model M4 on, the cdfs
nearly coincide.

Compliance of the Electric Field Levels

All exposimeter measurements were above the
detection limit of 0.05 V/m and lie between 0.07
and 0.38 V/m, with an average of 0.20 V/m and a
standard deviation of 0.16 V/m. All measurements
satisfy the guidelines issued by the International
Commission on Non-Ionizing Radiation Protection
(ICNIRP) [1998]. The maximum measured electric
field strength (0.38 V/m) or average power density

TABLE 3. Correlation Parameters of Existing Models; Most Calculated a Weighted Kappa and We Added This for Our
Model (in Parentheses)

Model r rs k Sensitivity Specificity # Points

Total field indoor þ outdoor cut-offs 50th and 90th percentiles
Frei et al. [2009b] (eval/valid) — 0.51/0.65 0.28/0.55 0.56/0.67 0.95/0.96 163/31

Total field indoor cut-off 90th percentiles
Breckenkamp et al. [2008] — — 0.17/0.34 0.25/0.40 0.92/0.94 1132/343

Total field outdoor cut-offs tertiles
Bürgi et al. [2010] 0.54 0.64 0.48a — — 113

GSM900 indoor cut-off 0.137 V/m
Neitzke et al. [2007] 0.64 — 0.50a 0.56 0.93 610
Bürgi et al. [2010] 0.57 0.66 0.60a 0.63 0.90 133

GSM900 outdoor cut-offs tertiles
Bürgi et al. [2008] (urban/rural) 0.76/0.86 — 0.77a/0.75a — — 20/18

GSM900 outdoor cut-offs 50th and 80th percentiles
Model M6 (exp/SA valid) 0.71/0.67 0.74/0.66 0.41 (0.51a)/0.44 (0.50a) 0.67/0.67 0.92/0.88 30/31

r ¼ Pearson correlation coefficient, rs ¼ Spearman’s rank correlation coefficient, and k ¼ Cohen’s kappa. # Points is the number of
measurement locations used for the comparison, eval ¼ evaluation, valid ¼ validation, exp ¼ exposimeter and SA ¼ spectrum ana-
lyzer. All parameters are unitless.
aWeighted kappa, counting classification into adjacent categories as 50% agreement.
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(0.38 mW/m2) corresponds to 0.01% of the ICNIRP
power density reference level for the general public
for 900 MHz, according to the European Commis-
sion Recommendation 1999/519/EC [EC, 1999].

DISCUSSION

A new method to accurately map the exposure
to base station radiation in an outdoor environment
based on surrogate modeling and sequential design

was proposed and tested for GSM900 in a small ur-
ban area. A total of 100 exposimeter measurements
were performed in 10 batches of 10. After each
batch, the interpolation model was updated with the
new measurements based on the next optimal mea-
surement locations determined using the LOLA-Vor-
onoi algorithm.

Based on the results shown in Table 2, we can
conclude that 50 measurements (Model M4) are

Fig. 4. Spectrum analyzer validation of models M0, M4, M6, and
M9. a: Scatter plot for the comparison of predicted (by the four
models) and measured (with the exposimeter) electric field val-
ues. Full line depicts a perfect prediction and dotted lines define
the regionwith errorsbelow 3 dB. b:Cumulative distribution func-
tionsof therelative errorof the fourmodelsin comparisonwith the
exposimeterdata.

Fig. 3. Exposimeter validation of Models M0, M4, M6, and M9.
a: Scatter plot for the comparison of predicted (by the four mod-
els) and measured (with the SA) electric field values. Full line
depictsaperfect predictionanddottedlinesdefine theregionwith
errorsbelow 3 dB. b:Cumulative distribution functionsof the rela-
tiveerrorof the fourmodelsincomparisonwith the SAdata.
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sufficient to discover the main variations in the field
and create a crude map of the GSM900 (downlink)
electric field distribution in this particular region.
Seventy measurements (Model M6), on the other
hand, might be sufficient to completely characterize
the area and create an accurate exposure map be-
cause more measurements do not add much more in-
formation to the interpolation model.

We have shown the validity of our model with
SA measurements, as the average relative error found
(1.5 dB) is well within the measurement accuracy
of the SA (3 dB). The final model, M9, built from
100 measurements, shows the best validation results
(see Tables 4 and 5 in the Online Supplementary Ma-
terial) with very small errors (REmax below 50%),
very good correlation with exposimeter (r ¼ 0.7,
r ¼ 0.75) and SA measurements (r ¼ 0.8, r ¼ 0.75)
and high probabilities of classifying exposed and
unexposed samples correctly (specificity ¼ 0.92,
sensitivity ¼ 0.67/0.83, for exposimeter/SA valida-
tion, respectively). We can conclude that in terms of
error metrics, performing even more measurements
might not enhance the model much. This was to be
expected because both exposimeter and SA measure-
ments inhibit a certain uncertainty. Furthermore,
based on error metrics alone, we already obtain ex-
cellent results from Model M4 (50 measurements)
with 80% of the predicted values within 3 dB (factor
H2 in electric field strength) of the measurements.
Correlation is also reasonable; for example,
r ¼ 0.66/0.62, k ¼ 0.25/0.23 (which is rather weak)
and specificity ¼ 0.88/0.84, but from Model M6

on, correlation is notably better (r ¼ 0.71/0.67,
k ¼ 0.41/0.44 (moderate) and specificity ¼ 0.92/
0.88). This high specificity, and in a lesser way the
moderate sensitivity (0.67 for M6), strengthens our
belief that our procedure can quickly result in a trust-
worthy exposure prediction model.

Comparison to Existing Exposure Models

As mentioned, there have been previous
attempts at exposure prediction models, namely by
Bürgi et al. [2008, 2010], Breckenkamp et al. [2008],
Isselmou et al. [2008], Frei et al. [2009b], Elliott
et al. [2010], Azpurua and Dos Ramos [2010] and
Paniagua et al. [2012]. Their results, along with the
results of our M6 Model (70 measurements), are sum-
marized in Table 3, except for Azpurua and Dos
Ramos [2010] who compared interpolation techni-
ques, Paniagua et al. [2012] who compared the inter-
polation models of a dense and a scarce set of
broadband measurements, and Elliott et al. [2010]
who used an empirical model of the power density in
which some of the parameters were based on SA

measurements. Azpurua and Dos Ramos, and Pania-
gua et al. only published absolute errors and did not
mention relative errors or correlation parameters.
Comparing solely the number of measurement loca-
tions per unit of study area would also be irrelevant,
thus making it very difficult to compare their results
with those of our study. Elliott et al. [2010] only men-
tioned the Spearman correlation coefficient, which
is similar to ours (0.66 compared to 0.74/0.66 in the
case of exposimeter/SA validation), and R2 values.

All models in Table 3 are simulation models
using exposimeter measurements as validation (except
in Bürgi et al. [2008] where a broadband probe was
used, and Neitzke et al. [2007] who used SA meas-
urements), and need many accurate input parameters
(e.g., technical parameters of base station antennas,
relative positions, and housing conditions). From
three of these models, results have been published
about GSM900 measurements. Only one of them has
been validated outdoors [Bürgi et al., 2008].

Our correlation coefficients are very good com-
pared to other studies, and our kappa (although mod-
erate), sensitivity and specificity values are also
relatively consistent (Table 3). Additionally, in more
than 80% of the cases, measurements and Model M6

agree within 3 dB, corresponding to a factor
ffiffiffi
2

p
in

electric field strength, while Bürgi et al. [2008] men-
tion just 60% agreement within a factor of 2.

Strengths and Limitations

Our work makes a valuable contribution to the
overall human RF exposure assessment since the
outdoor environment and its continuous background
radiation emitted by numerous base stations are an
important aspect of everyday life. A key strength
of our approach is that prior knowledge concerning
sources (number of antennas, location, power levels,
etc.) and the environment (three-dimensional build-
ing coordinates, building materials, etc.) is not
required since the exposure assessment is measure-
ment-based in a real-life environment. As such, one
can use it to create an outdoor field exposure model
in an urban, suburban or rural area of choice, without
any a priori knowledge (except two-dimensional geo-
coordinates of building blocks), making the proposed
method interesting for authorities seeking to assess
the RF-EMF exposure in a certain area, for example.

If one is interested in a globally accurate expo-
sure map of an entire city, of course, by definition,
a large amount of measurements will have to be
performed. Note, however, that the number of meas-
urements needed depends on (a) the amount of
variation in the RF-EMF fields, and (b) the desired
resolution or accuracy of the map. If exposure maps
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are to be built for large areas or even entire cities,
slight variations in a certain street might be of less
importance. Hence, the number of measurements
can be reduced by relaxing the desired accuracy
constraints.

Our method can be applied to any environment
including indoors, although it would need some mod-
ifications to take the internal structure of a building
into account (such as walls, etc.). In reality, however,
it would prove extremely difficult to perform the nec-
essary measurements in every house or building, as
one would need permission from a large number of
people. To apply the sequential surrogate modeling
for houses, we propose to perform outdoor measure-
ments and combine them with the building penetra-
tion losses of Plets et al. [2009]. This would be a
sound approach and would allow us to create a field
exposure map including the houses’ ground floors. It
should be noted, however, that this would only result
in an extended 2D exposure map. A full 3D model
incorporating higher floor levels cannot be built with-
out knowledge of the relevant base station parameters
(e.g., antenna tilts).

All measurements were performed on weekdays
between 10 am and 4 pm while avoiding busy hours
(e.g., noon, schools out). However, temporal varia-
tions are currently not accounted for. In future re-
search, it will be investigated whether temporal
exposure measurements (i.e., during 24 h, 1 week,
etc.) at a carefully selected number of measurement
locations in the area could enable the derivation of a
time-domain exposure map of the area.

In this study, we used an EME SPY120
exposimeter. Lauer et al. [2012] stated that GSM base
station exposure might be underestimated because if
not all eight time slots in the GSM downlink band are
occupied, the EME SPY120 exposimeter would not
detect the signal (corresponding to a ‘‘measured’’
sample value of 0.05 V/m). However, as we had only
a few non-detects in our sample data for GSM900
exposure, we consider our calculated averages to be
sound. This is also our conclusion when comparing
SA and exposimeter measurements for GSM900 sig-
nals (Table 1). Note that Isselmou et al. [2008] did a
comparison between exposimeter and SA measure-
ments for GSM900 signals as well, finding a similar
result. Moreover, Neubauer et al. [2010] found an av-
erage degree of underestimation by the exposimeter
of 0.76 for GSM900 exposure due to the presence of
the body, while we found that the exposimeter under-
estimates the field exposure in comparison with the
SA results by an average of 0.75.

The exposimeter and SA validations were per-
formed independently, and although both equipment

have very different measurement accuracies, they
gave similar results (e.g., for Model M6 the MRE
is 1.5–1.7 dB, 83–84% of the errors are below
3 dB, and the correlation coefficient equals 0.7).
This shows that our models can handle the larger
measurement inaccuracy of the exposimeter, and the
proposed procedure is suitable to predict GSM900
downlink exposure.

In order to assess the RF-EMF exposure to (the
sum of) more sources, in the future we will make use
of a combination of broadband probe, exposimeter,
and SA measurements. It is possible to measure all
signals of interest at selected locations that are ‘‘opti-
mal’’ for one particular signal (e.g., GSM900) and
re-use these results as an initial sample distribution
to model the next signal (e.g., UMTS, around
2.1 GHz). The algorithm and its stopping criterion
will then decide if/where additional measurements
are needed.

Finally, we performed measurements of the av-
erage electric field strength in order to provide field
exposure maps, not the specific absorption rate. How-
ever, actual absorption can be determined from field
exposure using the data from Neubauer et al. [2010]
and Joseph et al. [2010b, 2012b]. This will also be
part of future research.

CONCLUSION

A new, efficient measurement and modeling ap-
proach is proposed for the mapping of base station
exposure based on surrogate modeling and sequential
design. It can be applied in real time and without a
priori knowledge. We used a fast and efficient
exposimeter measurement method to obtain an accu-
rate surrogate model of the exposure to GSM900
radiation in a small suburban area in Ghent, Belgium,
by interpolating measurements at locations selected
sequentially in batches of ten using the LOLA-
Voronoi algorithm. The models are validated with
independent SA and exposimeter measurements and
excellent results are obtained.

Up to now, this measurement procedure, mea-
surement method, and modeling technique have not
been applied for experimental exposure assessment
in real environments. However, our results are only
investigated outdoors for GSM900 downlink expo-
sure in a small-sized area (about 0.04 km2). The ap-
plication of our procedure to other signals as well
as to different and larger areas will be the subject
of future research. In a case where the exposimeter
does not measure another signal correctly or cannot
measure it at all (e.g., LTE), one will have to use an
SA instead.

SurrogateModelingofBaseStationExposure 309

Bioelectromagnetics



ACKNOWLEDGMENTS

D. Deschrijver and W. Joseph are Post-Doctoral
Fellows of the FWO-V (Research Foundation—
Flanders).

REFERENCES

Azpurua MA, Dos Ramos K. 2010. A comparison of spatial in-
terpolation methods for estimation of average electromag-
netic field magnitude. PIER M 14(7):135–145.

Bolte JFB, van der Zande G, Kamer J. 2011. Calibration and
uncertainties in personal exposure measurements of radio-
frequency electromagnetic fields. Bioelectromagnetics
32(8):652–663.

Bornkessel C, Schubert M, Wuschek M, Schmidt P. 2007. Deter-
mination of the general public exposure around GSM and
UMTS base stations. Radiat Prot Dosim 124(1):40–47.

Bornkessel C, Blettner M, Breckenkamp J. 2010. Quality control
for exposure assessment in epidemiological studies. Radiat
Prot Dosim 140(3):287–293.

Breckenkamp J, Neitzke H-P, Bornkessel C, Berg-Beckhoff G.
2008. Applicability of an exposure model for the determi-
nation of emissions from mobile phone base stations.
Radiat Prot Dosim 131(4):474–481.

Bürgi A, Theis G, Siegenthaler A, Röösli M. 2008. Exposure
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Fröhlich J, Neubauer G, Egger M, Röösli M. 2010. A
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Röösli M, Frei P, Mohler E, Braun-Fahrländer C, Bürgi A,
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Thomas S, Kühnlein A, Heinrich S, Praml G, Nowak D, von
Kries R, Radon K. 2008a. Personal exposure to mobile
phone frequencies and well-being in adults: A cross-sec-
tional study based on dosimetry. Bioelectromagnetics
29(7):463–470.
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