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A Barycentric Vector Fitting Algorithm for Efficient
Macromodeling of Linear Multiport Systems
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Abstract—Common-pole modeling of frequency responses can
be time consuming for systems with highly resonant responses.
This letter presents a Barycentric Vector Fitting algorithm that
improves the running time of existing Vector Fitting algorithms.
The effectiveness of the approach is demonstrated by applying it to
coupled microstrip lines. Numerical results confirm the accuracy
of the model and the savings in computation time.

Index Terms—Barycentric interpolation, macromodeling,
system identification, transfer functions, vector fitting (VF).

I. INTRODUCTION

R ATIONALmodeling of frequency responses has received
a lot of attention over the past decade. Such models are

very important for efficient time domain and frequency domain
simulation of microwave systems. When compared to other ra-
tional fitting methods, the Vector fitting (VF) algorithm was
found to be a highly robust and efficient method, applicable to
both smooth and sharply resonant responses of high order and
wide frequency bands [1], [2]. Over the past decade, a lot of im-
provements to VF have been proposed. In [3], a fast QR step
was proposed to reduce the computational complexity of the al-
gorithm when fitting multi-port systems with many ports and
poles. It was shown in [4] that also the convergence properties
can be enhanced in the presence of noise by adding an additional
relaxation constraint. This combined approach has become the
de-facto standard algorithm, available on [5].
This letter presents a barycentric vector fitting algorithm that

is able to compute models with comparable accuracy at a re-
duced computational cost. In particular, the computation time
of the pole-identification step is reduced by exploiting the spe-
cific form of the barycentric interpolation formula. Numerical
results confirm that this leads to significant savings in terms of
computation time, while preserving a good accuracy. Another
key difference with the existing VF algorithms is that the new
approach does not require an a-priori choice of starting poles,
which is often based on a heuristic procedure [1].

II. OUTLINE OF THE ALGORITHM

The goal of the algorithm is to compute a macromodel that
approximates all scattering elements (for )
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of a transfer matrix with a common set of poles over a given
frequency range of interest . All data samples are
split in 2 disjoint sets and , such that

(1)

contains a small amount of samples that are equally
spaced over the frequency range [6], whereas comprises the
remaining data samples (usually ). First, the algo-

rithm computes a causal rational model that interpolates all data
in (Section III). Then, the coefficients of this model are itera-
tively calculated such that the model also approximates the data
in a least-squares (LS) sense (Section IV). In each step of the

iteration, the starting poles of the model are relocated to a better
position. This process is called pole-identification. Once the ac-
curacy of the model has converged or stalled, the iteration is ter-
minated and the poles of the final model are found by solving an
eigenvalue problem. Once these poles are calculated, all avail-
able data in can be used to identify the corresponding
residues as a linear LS problem, see [1].

III. RATIONAL MODEL REPRESENTATION

A. Barycentric Interpolation Formula

A rational function that interpolates all the data in
can be obtained by applying the barycentric interpolation for-
mula. This formula yields an interpolating transfer function for
any choice of non-zero barycentric weights ( ) [7]

(2)

Although (2) resembles the VF model representation, there are
some differences: 1) both and share the same set of
coefficients and 2) the common set of starting poles are
purely imaginary instead of complex-valued. The starting poles
are equally spaced over the frequency range (Section II) and

located on the positive part of the imaginary axis. Unfortunately,
the causality of model (2) is not guaranteed.

B. Causal Model Representation

As to obtain a real-rational causal model ( ),
both and are interpolated and a
linear combination of the basis functions is formed as shown in
[1, App. A]. This modification leads to a transfer function with
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complex conjugate, purely imaginary starting poles
having real coefficients

(3)

The basis functions and are defined for
each complex conjugate pole-pair of as

(4)

(5)

and similarly, and in are defined for
each complex conjugate pole-pair of as

(6)

(7)

where and . Hence, for any choice
of real-valued coefficients , the transfer function model

in (3) will be causal and interpolates the data in

IV. BARYCENTRIC VECTOR FITTING (B-VF)

The flexible choice of coefficients allows one to impose
extra properties to the model [8]. Here, coefficients are calcu-
lated iteratively such that the model also approximates the data
in in a LS sense. A linear formulation is obtained by multi-
plying both sides of (3) with and by minimizing

(8)

Hence, if the following definitions are introduced ( ):

(9)

(10)

(11)

then the coefficients of (3) can be calculated by solving the
following overdetermined set of linear equations

(12)

where the matrices and are defined as follows:

(13)

(14)

Here, is a generic variable that denotes either or . Once
the coefficients in solution vector are found, one can sim-
plify (3) by cancelling out the starting poles . The relocated
poles of the transfer function are then the
zeros of . These zeros are calculated by solving an eigen-
value problem that is based on the minimal state space realiza-
tion of , as shown in [1, App. B]

(15)

The estimated poles can iteratively be refined by applying the
Sanathanan–Koerner (SK) iteration with explicit weighting [2]

(16)

So, instead of replacing the initial poles with the relocated
poles , an inverse weighting function ( ) is applied
to each row of the LS matrix and updated values for the coeffi-
cients are computed in each iteration step .
Once the accuracy of the model has converged, any unstable

poles are flipped into the left half plane and the standard residue
identification of VF is applied to compute a full LS solution
using all data in , see [1] for details.

V. RELAXATION

In order to improve the convergence properties of the
SK iteration [9], the high frequency asymptotic constraint
on can be removed. This is achieved by
making a free variable, and adding an additional relaxation
condition to the LS equations as shown in [4]. The implemen-
tation of relaxation [4] is completely analogous, and can easily
be combined with the new presented methodology.

VI. COMPLEXITY ANALYSIS

The computational complexity of the new algorithm can be
analyzed by counting the number of floating point operations
for the linear algebra problems that are involved. Following the
same procedure as outlined in [10, Sect. III], it is shown that the
number of flops for the QR-based VF algorithm is

(17)

A similar analysis on the Barycentric VF algorithm shows that
the number of flops can be further reduced by a constant factor

(18)

For both algorithms, the pole-identification step is the most ex-
pensive part. The VF algorithm performs a QR decomposition
for each single matrix element (see [3, (10)]), and then it solves
a compound least-squares problem (see [3, (11)]). The B-VF
algorithm can reduce this cost because it only needs to solve
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Fig. 1. Response of model calculated with B-RVF ( ).

Fig. 2. Evolution of RMS error in terms of iteration count .

TABLE I
OVERVIEW OF VECTOR FITTING ALGORITHMS

TABLE II
TOTAL COMPUTATION TIME FOR SINGLE ELEMENT FITTING ( )

a least-squares problem (12), albeit with a matrix on the left-
hand-size that is somewhat taller in size.

VII. NUMERICAL RESULT: COUPLED MICROSTRIP LINES

This example demonstrates the modeling of a 6 inch coupled
microstrip lines on an FR4 PC board [11]. The noisy S-parame-
ters of the 4 4 transfer matrix were measured at 799 frequen-
cies over the range [0.05 – 20 GHz]. They are modeled using
the different modeling approaches outlined in Table I. A macro-
model with was computed using B-RVF and the
result is shown in Fig. 1. In Fig. 2, the evolution of the RMS
error is compared in terms of iteration count, and it is found

TABLE III
TOTAL COMPUTATION TIME FOR MULTIPLE ELEMENT FITTING ( )

TABLE IV
COMPUTATION TIME FOR POLE-IDENTIFICATION: . &

that B-VF and B-RVF have a similar accuracy and convergence
behavior as QR-VF and QR-RVF, respectively. In Tables II and
III, also the total computation time is compared for themodeling
of a single matrix element ( ) or all the matrix elements
( ). It turns out that the new barycentric algorithms are
significantly faster, especially as the number of poles increases.
Table IV shows that this speed-up is due to the faster pole iden-
tification step, as discussed in Section VI1.

VIII. CONCLUSION

A fast approach for the macromodeling of frequency re-
sponses was presented. The method exploits the barycentric
interpolation formula in order to speed-up the pole identifi-
cation step. Numerical results show that the method delivers
accurate results, even when the data is contaminated with noise.
It improves the running time of QR-based VF algorithms, for
the fitting of single/multiple elements of a transfer matrix.
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1All timing results are for in MATLAB on 64-bit oper-
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The starting poles are always chosen in an optimal way as discussed in [1], [2]


