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Abstract — This paper investigates the use of
surrogate-based optimization to optimize the behav-
ioral response of broadband microwave filters. The
proposed method makes use of an efficient infill cri-
terion (called expected improvement) that sequen-
tially samples the response of the device at well-
chosen regions in the design space. Based on these
data samples, successive global surrogate models
are built that become increasingly accurate near
the optimum solution. A microwave filter exam-
ple confirms that this approach significantly acceler-
ates device optimization when compared to standard
gradient-based methods.

1 Introduction

The design and optimization of passive microwave
filters often requires a massive amount of Electro-
Magnetic (EM) simulations in order to find the
optimum design space parameters. Although sev-
eral EM simulators are available to compute the re-
sponse of a device, it is well-known that such sim-
ulations are often computationally expensive and
slow down the overall optimization process [1, 2].

In [3], it was shown how to generate a paramet-
ric macromodel that is globally accurate over the
complete design space. Such a model can act as a
fast surrogate or replacement model for the simula-
tor, and thereby allows considerable speedups dur-
ing the optimization process [4]. The model can
also be used in design space exploration, sensitivity
analysis etc., as an add-on. However, the calcula-
tion of the parametric macromodel is not a trivial
task, since the computational cost to build and val-
idate the high-fidelity macromodel may require a
considerable amount of additional EM simulations.

The surrogate-based optimization (SBO) method
proposed in this letter takes advantage of the fact
that full coverage of the complete design space is
not needed to find an optimum solution. Rather
than computing a globally accurate macromodel of
the parameterized frequency response as in [3], it
is proposed to generate a macromodel of the cost
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function that is locally accurate in the regions of
interest. The method exploits one of the most pop-
ular adaptive sampling concepts, namely, the Ex-
pected Improvement (EI) measure for optimization
with the help of Kriging surrogate models [5, 6, 7].

The EI measure guides the sequential selection of
data samples into regions of the design space where
the optimum solution is most likely to be found.
Once the algorithm discovers a sample that satisfies
the requirements, the optimization is terminated
and the final solution is returned. The efficiency of
the optimization method is illustrated by applying
it to a double folded stub filter [8].

2 Surrogate-Based Optimization (SBO)

The parameterized transfer matrix H(s,%g) of a de-
vice can be simulated as a function of the frequency
s = jω and a vector of design variables %g. The aim
of the optimization process is to find values for the
design variables %g such that the system response
satisfies a set of design specifications. These specifi-
cations are reformulated into a unified cost function
that must be minimized (Sect. 2.1). First, a lim-
ited set of simulations are performed such that the
cost function is well sampled over the parameter
space (Sect. 2.2), and a Kriging surrogate model
is built (Sect. 2.3). The Expected Improvement
(EI) infill criterion is then used to select additional
data samples in a sequential way, and the Kriging
surrogate model is updated (Sect. 2.4). The EI in-
fill criterion effectively balances between enhancing
the global accuracy of the surrogate model (explo-
ration) and improving its accuracy near the current
optimum (exploitation). As the algorithm contin-
ues, the model becomes increasingly accurate near
the optimum (i.e. the minimum of the cost func-
tion). As soon as a satisfactory solution is found,
the optimization is terminated and the best solu-
tion is returned.

2.1 Definition of the cost function

A typical EM design optimization problem consists
of several constraints on the lower (Rk

L) and up-
per (Rk

U) bounds on the magnitude of a frequency
response at several frequencies sk, k = 1, 2, ..,K.
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Each specification can be formulated as an individ-
ual cost function fk(%g) that needs to be minimized

fk(%g) = Rk
L − |H(sk, %g)| or |H(sk, %g)| −Rk

U. (1)

The cost functions (1) are then unified in a minimax
sense to yield the overall cost function

f(%g) = max
k
(fk(%g)). (2)

Note that a negative cost indicates that the corre-
sponding specifications are satisfied, while a pos-
itive cost denotes that the specifications are vio-
lated. The goal of the optimization procedure is to
choose the design parameters %g in such a way that
the overall cost function f(%g) (2) is minimized.

2.2 Simulation of initial data samples

First, a limited number of EM simulations are per-
formed to obtain the response H(s,%g) for well-
chosen values of the design variables %g. To this end,
an optimized Latin Hypercube Design was used be-
cause of its space-filling properties [9]. Secondly,
the corresponding outputs of the cost function f(%g)
in (1) and (2) are computed to build a Kriging sur-
rogate model.

2.3 Generation of a Kriging surrogate
model

Kriging models are part of a broader class of ap-
proximation methods, called Gaussian Processes
(GP), and have a particular importance in SBO.
While traditional approximation methods predict
only a single function value, GP methods can pre-
dict the uncertainty of a function value as the re-
alization of a normally distributed random vari-
able Y (%g) ∼ N(μ(%g), σ2(%g)) where μ(%g) denotes the
mean or predicted value (μ(%g) ≈ f(%g)) and σ2(%g)
denotes the prediction variance. This property is
exploited by the infill criterion to guide the sequen-
tial sampling, as shown in the next section. The
details of Kriging models are well documented in
the literature [10, 6, 11].

2.4 Expected Improvement infill criteria

Once a Kriging model is built, the EI measure de-
termines the optimum location of the next infill
point at which a simulation has to be carried out.
First, the EI quantifies the amount of improvement
that is expected to occur as compared to the op-
timum value obtained so far. The EI is computed
by considering every possible improvement over the
current best optimum value fmin, multiplied by the

Figure 1: EI of an unknown function f(g) at g = 0.5
. A Gaussian probability density function (PDF)
is shown at g = 0.5 and the first moment of the
shaded area represents the value of the EI [7].

associated likelihood. If φ(·) denotes the probabil-
ity density function of a random variable, then the
EI can be written in integral form as [5]

E[I(%g)] =

∫ fmin

−∞
I(%g) · φ(Y (%g))dY (3)

where the improvement I(%g) of Y (%g) over fmin is
defined as

I(%g) = max(fmin − Y (%g), 0). (4)

This function (3) can be expressed in a closed-form
[7], and it is then optimized over the design space
using the DIviding RECTangles (DIRECT) algo-
rithm [12]. It automatically balances exploration
and exploitation [5, 6]. For convenience, a graphi-
cal illustration of the EI concept is provided in Fig.
1. Note that the EI function (3) corresponds to
the first moment of the shared area in Fig. 1. The
additional samples generated this way are used to
update the Kriging model, and the process is re-
peated until a satisfactory solution is found.

3 Numerical example: Double folded stub
(DFS) microwave filter

The example deals with the optimization of a DFS
microwave filter, where the spacing S between the
stubs and the length L of the stubs are chosen as
the design variables in addition to frequency (see
Fig. 2). The substrate for the filter is chosen with
relative permittivity εr = 9.9 and a thickness of
0.127 mm, and the ranges of the parameters are re-
ported in Table 1. The design specifications of this
band-stop filter are given in terms of the scattering
parameters, similarly to [13],

|S21| ≥ −3 dB for freq ≤ 9GHz, freq ≥ 17GHz,

|S21| ≤ −30 dB for 12GHz ≤ freq ≤ 14GHz. (5)
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Table 1: Design parameters of the DFS band-stop
filter

Parameter Min Max
Frequency (freq) 5 GHz 20 GHz
Spacing (S) 0.1 mm 0.25 mm
Length (L) 2.0 mm 3.0 mm

The scattering element S21(s, S, L) is computed us-
ing ADS Momentum [14], and the frequency sam-
ples are used to evaluate the cost function f(%g) with
%g = (S,L), as in (1) and (2).

Figs. 3 and 4 show the response of the cost
function f(%g) and its contour plot respectively,
where the samples selected by the infill-criterion
are marked as black dots. It is found that the sam-
ples are indeed clustered near the optimum, while
maintaining a good overall coverage of the design
space. In practice, the algorithm is terminated as
soon as a satisfactory solution (S∗, L∗) is found, in
this case after simulating only 12 samples. The cor-
responding frequency response is visualized in Fig.
5, and it is straightforward to verify that the design
specifications in (5) are indeed satisfied.

Table 2 makes a comparison with two other
approaches that are reported in literature. The
first one is the gradient-based minimax optimiza-
tion routine as implemented in ADS Momentum.
The second one involves the calculation of a para-
metric macromodel whose sensitivity information
is exploited to speed-up the optimization process
[3]. Both methods require an initial starting point
(S0, L0) for the optimization, and are also able to
find a satisfactory solution. Nevertheless, it turns
out that the surrogate-based optimization method
is able to find a solution with the smallest compu-
tation times. Another key advantage of this ap-
proach is that the simulated frequency samples can
be stored and re-used to speed-up future optimiza-
tion that involve different cost functions.

Figure 2: Layout of Double Folded Stub Filter

Figure 3: Cost function over the design space along
with the sampled locations.

Figure 4: A contour plot of the cost function shown
in Fig. 3.

Figure 5: Magnitude of S21 at the solution using
proposed optimization.
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Table 2: Overview different optimization routines

4 Conclusions

Surrogate-Based Optimization using the concept
of Expected Improvement (EI) of microwave fil-
ters has been presented in this paper. This paper
compares the SBO method with the approach of
using parametric sensitivity macromodels, focusing
on optimization and subsequently finding suitable
values for the design parameters. A comparison has
been made in terms of the number of EM simula-
tions required and the computational time before
an optimum is found.
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