
B
ehavioral models such as macromodels, sur-

rogate models, metamodels, and response sur-

face models have many applications in diverse 

research domains such as aerodynamics [1], hydrology 

[2], mechanical engineering [3], and many more. When 

considering the design flow of electronic devices, these 

models are often used to characterize the time- or fre-

quency-dependent behavior of an electronic compo-

nent while taking all electromagnetic (EM) phenomena 

into account: crosstalk, attenuation, dispersion, and 

coupling effects for example [4]. Such models are of 

crucial importance for efficient design space explora-

tion, design optimization, and sensitivity analysis [5], 

[6]. A key advantage is that they are calculated inde-

pendently of the device’s physics and that they are 

valid for over a wide range of design variables, taking 

into account multiple geometrical layout or substrate 

features. Additionally, the models can easily be linked 

together in a model cascade. 

Some examples of behavioral models include poly-

nomial/rational functions [7]–[10], Kriging models 

[11], [12], artificial neural networks (ANNs) [13], [14], 

and support vector machines (SVMs) [15]. To obtain a 

reliable model that satisfies all design requirements, 

significant challenges need to be addressed, such as 

which data collection strategy to use, which model 

type is most applicable, how to rank different models 

according to quality, etc. At the same time, electronic 

design automation (EDA) experts are typically not 

familiar with the intricacies of these design choices. 

Their primary concern is obtaining an accurate 

replacement model with minimal computational over-

head. The selection of model types, model parameter 

optimization, and sampling strategy are of lesser or no 

interest to them since these are just necessary interme-

diate steps to solve the overall design problem [16]. 

In this article, a unified and automated model-

ing framework is presented that can assist an EDA 

domain expert in generating accurate behavioral 

models [17]. It drives the underlying system-level 

simulator and at the same time builds and tunes the 

model in such a way that the model accuracy and 

compactness are maximized. On the one hand, it does 

not require particular assumptions about the device 

under test, but on the other hand, as no algorithm is 

optimal for every problem, full control is still left with 

the EDA domain expert such that problem-specific 

assumptions or customizations can easily be applied. 

Therefore, this work can lower the barrier of entry 

for domain experts, promote benchmarking between 

existing methods, and facilitate the transfer of knowl-

edge from behavioral modeling researchers to EDA 

domain experts. 

Global Behavioral Modeling
From an abstract level, the system-level computer sim-

ulator can be seen as an unknown multivariate func-

tion :f Cq
7X  that is defined on some domain Rd

1X  

and whose function values { ( ) ( )}x xY f f, Ck
q

1 f 1=
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are known at a fixed set of pairwise distinct sample 

points { }x xX , , k1 f 1 X=  [18]. The behavioral model 

is then a suitable function fu  that closely resembles f as 

measured by some criterion p , where p  is defined as a 

triplet that consists of following parts: 

 ( ), ,p f xK= . (1)

K  is a model quality estimator, i.e., a function that 

assigns a positive score to a behavioral model where 

lower scores indicate a more desirable model. Many 

implementations of K  have been described: the error 

in the samples, the hold-out, bootstrap, cross valida-

tion, jack-knife, Akaike’s information criterion (AIC), 

etc. [19]. An implementation of K  is typically associ-

ated with an error function f . While K  specifies the 

model quality estimation algorithm such as cross 

validation, f  specifies what error function should be 

used to calculate the actual quality score, e.g., mean 

relative error or maximum absolute error. Finally, x  is 

the model quality target desired by the user. 

The behavioral modeling problem (i.e., finding 

the best approximation f *u ) for a given set of data 

points {( ( )) ( ( ))}x x x xD f f, , , ,k k1 1 f=  can be formally 

defined as 

 ( )arg min arg minf f D, ,*
t,

t T

fK= i
! !i H

u u  (2)

such that 

 ( )f D, ,*
t, #f xK i
u , (3)

where ft,i
u  is the parametrization i  (from a parameter 

space H) of fu , and ft,i
u  is of model type t (from a set of 

model types T). 

The first minimization over t T!  is the task of 

selecting a suitable model type, i.e., a rational function, 

a neural network, a spline, etc. This is the model type 

selection problem. In practice, one typically considers 

only a single t T! , though others may be included for 

comparison. In some cases, the choice of model type is 

also linked to physical properties of a system such as 

causality, stability, or passivity [20]–[22]. Then, given a 

particular model type t, the task is to find the model 

parameter assignment i  that minimizes the model 

quality measure K , e.g., determine the optimal order 

of a polynomial model or the optimal neural network 

topology. This is referred to as the “hyperparameter 

optimization problem,” though generally both mini-

mizations (over t and over i ) are simply referred to as 

the “model selection problem.” 

In order to construct fu , the data set needs to be 

populated. Traditionally, the size and distribution of 

the data is chosen up-front using standard experimen-

tal designs such as a latin hypercube design. However, 

since ( )f $  is expensive to compute, it becomes impor-

tant to avoid unnecessary simulations. Consequently, 

since the complexity of the response surface is not 

known up front, defining an a priori data distribution 

is undesired. Instead, data points should be selected 

iteratively, at locations where the benefit to the model 

will be the greatest. 

One starts by constructing an initial experimental 

design using one of the many algorithms available 

from the theory of Design and Analysis of Computer 

Experiments (DACE) [23]. The task is then to generate 

a new set of maximally informative samples based on 

one or more criteria. Examples of such criteria include 

distance from other points, distance from optima, pre-

diction uncertainty, etc. In each iteration of a sampling 

algorithm, a best approximation model is obtained, 

leading to a sequence of models. The overall number 

of data samples should be kept to a minimum, while at 

the same time maximizing the benefit to the model fu  

with respect to p . 

This process is called “adaptive sampling” [24], 

but is also known as “active learning” [25], “reflective 

exploration” [7], ”Optimal Experimental Design” [26], 

“Sequential Exploratory Experimental Design” [27], 

and “sequential design” [28]. 

Figure 1 shows how the model generation and data 

collection fit together in a high-level control flow. 

There are two main parts to the flowchart: an outer 

adaptive sampling loop and an inner adaptive model-

ing loop. Given a set of sample points, the inner loop 

Generate Candidate
Sample Points

Perform Simulations

Assess Models
Generate/Update

Models

Targets
Reached?

No

Yes

Return Final Model

Figure 1. General flowchart for adaptive global behavioral 
modeling. The outer sampling loop will iteratively sample 
the design space while an inner modeling loop will generate 
models that accurately capture the data selected each 
iteration.
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will optimize the model hyperparameters (e.g., neural 

network topology) until no further improvement is 

possible on the given set of samples. Having reached 

a minimum of the hyperparameter space [the inner 

minimization in (2)], the algorithm then signals the 

sample selection loop to determine a new, maximally 

informative set of simulation points. These are then 

evaluated and merged intelligently with the exist-

ing sample points and the adaptive modeling process 

is allowed to resume. This whole process continues 

until the user-defined accuracy has been reached or 

some user-defined stopping criterion is met. The final 

behavioral model is returned to the user. 

The flow of control in Figure 1 forms the basis for 

every data-based approximation methodology. For 

example, note the similarities with the work by Zhang 

in [29]. Of course, as is, Figure 1 has little practical 

value since it is very vague. Like the expectation-max-

imization algorithm [30] it is really a meta-algorithm 

that can have many different actual instantiations, 

depending on what techniques are used for each 

step. However, it should be clear that there are a large 

number of modeling options and choices available to 

the designer: different model types, different experi-

mental designs, different sample selection strategies, 

different model selection criteria, different hyperpa-

rameter optimization strategies, etc. All choices that 

are difficult to make in an a priori manner [31]. 

Consequently, this generic control flow is taken as 

a starting backbone, extended with pluggable compo-

nents for each of the different steps. This results in a 

generic solution that can still be customized for a spe-

cific problem if needed. In addition, custom extensions 

ensure that the whole is more than a bag of tools but 

that some automation (e.g., for model type selection) 

is available if needed. The resulting modeling plat-

form can easily help an EDA domain expert to choose 

between different techniques and help him apply 

advanced modeling methods to his problem with min-

imal overhead. Depending on the configuration, the 

modeling platform can run autonomously, for example 

if just a quick-and-dirty model is needed, or under full 

manual control with problem specific methods and 

customizations (to ensure optimal efficiency accuracy 

for a given problem). The framework in question is the 

MATLAB Surrogate Modeling (SUMO) Toolbox. 

SUMO Toolbox
The SUMO Toolbox illustrated in Figure 2 [32], [33] is 

a flexible tool that integrates different modeling ap-

proaches and implements an adaptive behavioral model 

construction algorithm based on the flowchart in Fig-

ure 1. Given an EDA simulation engine [e.g.,  Simula-

tion Program with Integrated Circuit Emphasis (SPICE), 

SpectreRF, High Frequency Structure Simulator (HFS), 

Momentum, Computer Simulation Technology (CST) 

etc.) the toolbox computes a model within the time and 

accuracy constraints set by the user. Different plug-ins 

are supported: 

 • Model Types
 •rational functions

 •Kriging

 •splines

 •SVM

 • Model Parameter Optimization Algorithms
 •particle swarm optimization

 •efficient global optimization

 •simulated annealing

 • Sample Selection
 •random

 •error based

 •density based

 • Sample Evaluation Methods
 •local

 •on a cluster or grid. 

The behavior of each software component is configu-

rable through a central XML [34] configuration file, 

and components can easily be added, removed, or re-

placed by custom implementations. This is illustrated 

in Figure 3. In addition, the toolbox provides meta- 

plug-ins, which include, e.g., evolutionary algorithms 

to automatically select the best model type for a given 

problem (see [31] for details) or the possibility to use 

multiple model selection criteria in concert [35]. 

There is built-in support for high-performance 

computing. On the modeling side, the model gen-

eration process can take full advantage of multicore 

CPUs if the MATLAB Parallel Computing Toolbox 

is available, and even of a complete cluster or grid if 

the MATLAB Distributed Scheduler is available. This 

can result in a significant increase in speed for model 

types where the fitting process can be expensive such 

as in neural networks. 

Likewise, sample evaluation (simulation) can occur 

locally with the option to take advantage of multicore 

architectures or on a separate computer cluster or 

Figure 2. Screenshot of SUMO Toolbox. (depicted with 
permission from http://www.sumo.intec.ugent.be).
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grid, possibly accessed through a remote head node. 

All interfacing with the grid middleware (submission, 

job monitoring, rescheduling of failed/lost simulation 

points, etc.) is handled transparently and automatically 

(see [36] for more details). Also, the sample evaluation 

component runs in parallel with the other components 

(nonblocking) and not sequentially. This allows for an 

optimal use of computational resources. 

The SUMO Toolbox has already been applied 

successfully to a very wide range of applications, 

including RF circuit block modeling [32], hydro-

logical modeling [37], electronic packaging [38], aero-

dynamic modeling [39], automotive data modeling 

[35], and EM compatibility [50]. Besides global mod-

eling capabilities, the SUMO Toolbox also includes a 

powerful optimization frame-

work based on the Efficient 

Global Optimization frame-

work developed by Jones [40]. 

Applications
To demonstrate the perfor-

mance of the framework de-

scribed above, two EM device 

modeling problems are dis-

cussed: a passive component 

(bandstop filter) and an active 

device [low-noise amplifier 

(LNA)]. 

EM Behavioral Modeling 
of a Bandstop Filter 
The first application concerns 

the modeling of a parametrized 

double-folded microstrip stub 

bandstop filter [6]. The filter 

with ports P1  and P2  is shown 

in Figure 4. 

The substrate is 0.1270 mm 

thick with a relative dielectric 

constant 9.9re =  and a loss tan-

gent 0.003tand = . The lines 

are infinitely thin and perfectly 

conducting with 0.1219W =  

mm. The parametric macro-

model of the scattering matrix 

is built as a function of the varying length of each folded 

segment [1.97 2.41]L ,!  mm and varying spacing 

between a folded stub and the main line [0.06 0.24]S ,!  

mm over the frequency range [5 20],  GHz. The EM sim-

ulation engine used is ADS Momentum. 

To assess the accuracy of the models objectively, a dense  

50 30 151# #  ( )frequencyL S# #  reference grid was cal-

culated. It is important to note that this data set is not used 

during the modeling process in any way since, typically, 

such a reference grid is not available. It is  simply used to 

objectively test the quality of the models a posteriori. 

Modeling Settings
The SUMO Toolbox v6.2.1 is configured with the generic 

ANN and multivariate rational modeling  plug-ins. No 

problem-specific tuning or settings were used. Thus the 

results will be indicative of how well a behavioral model 

can be obtained if the framework is applied without fur-

ther problem-specific knowledge, using only concepts 

from a data-modeling perspective. The multivariate ra-

tional models are based on a custom implementation [41]. 

The order selection is performed using a genetic algorithm 

(population size: 30, number of generations: 20), thus this 

need not be done manually. The model quality estimator, 

( )$K , is  fivefold cross validation [42], [19] configured with 

a mean square error (MSE) function (f). The ANN  models 
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Figure 4. Double-folded microstrip stub bandstop filter.
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are based on the MATLAB Neural Network Toolbox and 

are trained with Levenberg-Marquardt back-propagation 

with Bayesian regularization [43], [44] (600 epochs). Since 

the ANN models do not support complex data directly, 

the real and imaginary components are fitted separately 

using an ANN model with two outputs. The topology 

and initial weights are determined by an evolutionary 

strategy-like algorithm, with 25 models being generated 

each modeling iteration. To assess the model quality and 

drive, the topology  selection, ( )$K is taken as the sum of 

two criteria: the in-sample error (using an MSE) and the 

linear reference model (LRM) score [45]. The combined 

scores for each output (real/imaginary) are then added 

together to obtain the overall score of the model. The LRM 

score penalizes a model if it exhibits unwanted bumps or 

ripples between the sample points. It can be seen as a kind 

of smoothness penalty that has the added benefit of keep-

ing the neural network model complexity low. We found 

that the advantage of using these two metrics together 

is that they produce better ANN models and are much 

faster to evaluate than cross validation. 

Sampling Settings
The modeling starts with an optimal Latin hypercube 

design of four points augmented with the corner points 

in the two-dimensional (2-D) L S#  space. Each iteration 

a new sample is selected using the local linear approxi-

mation (LOLA)-Voronoi adaptive sampling algorithm 

[46]. LOLA-Voronoi identifies new sample locations 

by performing a trade-off between exploration, which 

is covering the design space evenly, and exploitation, 

concentrating on regions where the actual response is 

nonlinear. LOLA-Voronoi’s strengths are that it scales 

well with the number of dimensions, makes no as-

sumptions about the underlying problem or behavioral 

model type, and works in both the R  and C domains. 

LOLA can automatically identify nonlinear regions in 

the domain and sample these more densely than the 

more linear, flatter regions. To do this, LOLA-Voronoi 

depends only on previously evaluated data points. 

Because frequency is sampled automatically by ADS 

Momentum, LOLA-Voronoi samples in the 2-D instance 

space defined by the geometric parameters L and S. New 

samples are submitted to ADS Momentum, which returns 

a set of S-parameters over the frequency range of interest. 

In order to select a sample in the reduced 2-D design space 

(without the frequency parameter), slices are taken at mul-

tiple frequencies, and LOLA-Voronoi is used on each slice 

separately. This results in a nonlinearity estimation for 

each frequency slice, covering the entire 2-D design space. 

These estimations are aggregated into one score, which is 

used to select new samples in locations with the highest 

nonlinearity over the entire frequency range. 

Momentum is configured 

to return 31 frequency samples, 

and the SUMO Toolbox is set 

to terminate after 136 instance 

simulations (=136 # 31 = 4,216 

data points). Therefore, instead 

of using an explicit target accu-

racy value, simulations are per-

formed until the computational 

budget is exhausted ( 3x =- ). 

Results
Figure 5 shows a plot of the 

final rational models for S11  

and S12 . For conciseness, the 

following discussion will 

only treat S11 . The results for 

S12  are completely analogous. 

Figure 6 shows that the 

ANN model generation code 

is able to reduce the true 

error evaluated over a dense 
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reference grid quite effectively while minimizing the 

estimated error. This means that the in-sample error/

LRM combination is a good approximator of the true 

accuracy. In line with previous results [45], we see 

that the decrease in true error is quite steady with no 

large jumps. 

Figure 7 shows the probability density function of 

the absolute errors (obtained using kernel density esti-

mation [47]) for the final best ANN model found by 

the toolbox after 136 momentum simulations. The fig-

ure shows that very good accuracy is achieved. Note 

also the small difference between the training and test 

curves, meaning there is no overfitting and the models 

show good generalization. The final ANN model for 

S11  is a 3 8 16 2- - -  network (210 parameters) and 

for S12  a 3 12 15 2- - -  network (275 parameters). 

This notation denotes the number of elements of the 

input vector and the number of neurons in each layer 

of the ANN. 

Let us now examine the results for the multivariate 

rational functions. The evolution of the true error and 

estimated error during the model generation process 

is shown in Figure 8. Compared to the ANN results in 

Figure 6, we see that the error reduction is more erratic 

in the rational case, particularly in the beginning 

when only little data is available. This is due to the 

use of cross validation as the accuracy estimator. Even 

though we ensure an even distribution of the different 

folds, when data is relatively sparse, cross validation is 

known to give biased results [19] and can mislead the 

order selection procedure. 

Again, good accuracy is achieved on S11 , with the 

mean accuracy being better than for the ANN models. 

Given the rational nature of the underlying transfer 

function, this should not be surprising. However, it 

should be noted that the modeling effort was not the 

same for both model types. Since the rational functions 

are fast to construct and train, we can afford to build 

more of them during each modeling iteration than 

neural network models (since these are much slower 

to train). In this case, 20 # 30 = 600 rational models 

are built each modeling iteration versus only 25 neural 

networks. 

EM Behavioral Modeling 
of a Low-Noise Amplifier
The second application is concerned with the accurate 

capturing of the nonlinear behavior of an LNA. An 

LNA is characterized by performance figures such as 

voltage gain, linearity, and noise figure, which are func-

tions of design parameters such as width and length of 

transistors, bias conditions, and values of passive com-

ponents [48]. The goal of the design process is to figure 

out one or more sets of design parameters resulting in 

a circuit, which fulfills the specifications, that is, con-

straints given on the performance. More information 

on the modeling of this problem can be found in [32]. 

Obtaining the required circuit design parameters can 

be done through an approximation of the circuit perfor-

mance figures based on one or more behavioral models. 

This is referred to as a “forward model” of the circuit. A 

forward model can be either obtained via direct model-

ing of circuit performance using the one-step approach 

or by using intermediate surrogate models of a conve-

nient set of behavioral parameters (e.g., admittances and 

noise functions) and by computing performances via 

analytical equations in a post-processing or two-step 

approach. This is illustrated in Figure 9. 

To illustrate the indirect modeling approach, we 

consider the LNA and attempt to reproduce the behav-

ior of the input-noise current response variable iin
2 . 

The input parameters are the MOSFET width W, the 

inductances L L,s m, and the frequency, leading to a 
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four-dimensional (4-D) problem [32]. To illustrate the 

direct-modeling approach, we model the 2IIP  per-

formance parameter (denoting the second-order non-

linearity). We also use this approach to illustrate the 

scalability  of the modeling algorithms used. Instead of 

fixing the number of inputs, we vary them  from two 

to six. This will give insight into how the model accu-

racy and required number of data points changes as 

the dimensionality is increased from 2-D to six-dimen-

sional (6-D). The relevant input parameters are the 

transistor width W, the source inductance Ls , the load 

resistance RL, the voltage bias of the transistor VGS , the 

transistor length L, and the resistance in series with 

the generator RS (the genera tor series resistance). 

Modeling Settings
We use the same setup as the previous section but now 

only use ANN models since experience showed these to 

perform best on this problem. To ass ess the accuracy of 

the produced models objectively, reference test sets of 

size 51 15 11 7 5, , , ,2 3 4 5 6  are available. Again, remember 

that these do not influence the modeling process itself. 

Sampling Settings
The same sample selection algorithm is used as with 

the filter application, only this time there is no autos-

ampling (the frequency is not treated specially) and the 

sample budget is  extended to 1,580 points in the indi-

rect case and 3,000 points in the direct case. The data 

source is now a custom MATLAB script instead of ADS 

Momentum. 

Results
Figure 10 shows the evolution  of the relative error 

histogram over the reference data for the indirect 

problem. After 1,580 points, the error histogram cor-

responds to a mean relative error over all test data  of 

2.5% for the final 4-D model. 

For the direct-modeling problem, Figure 11 shows a 

visualization of the selected data samples and the model 

for the 2-D case. Figure 12 shows the true accuracy 

curve for each number of inputs from 2-D to 6-D. The 

true accuracy is calculated as the ro ot relative square 

error (RRSE) on each test set. The RRSE is defined as 
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where y, ,y y ru  are the true, predicted, and mean true 

response values, respectively. 
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The curves in Figure 12 depict how good the 

LRM sample error combination is at minimizing the 

error on the reference grid. Desirable features are a 

smooth, monotonic decrease of the  error as a func-

tion of the number of data points. The steeper the 

descent, the better. Erratic  jumps should be avoided, 

but temporary increases in error are permitted. 

The error may temporarily increase if adding new 

data points reveals new features in the data or a 

new interpretation. What  was thought to be a good 

model may turn out to be less accurate given the 

new information. 

Figure 12 shows that satisfactory ac curacy, which 

in this case is defined as a RRSE score of 0.05, can be 

reached in all cases, with convergence being particularly 

fast in the 2-D and three-dimensional (3-D) case. A sec-

ond observation is tha t the curves for five-dimensional 

(5-D) and 6-D are rather erratic, much more so than the 

2-D–4-D curves. The most likely reason for this lies in 

the fact that the LRM algorithm uses too few test points 

to estimate the model sm oothness in higher dimensions 

[45]. Table 1 shows the running times on a Laptop with 

Intel(R) Core(TM) i7-2760QP CPU at 2.4 GHz with 8 GB 

of RAM and a 64-bit operating system. 

Conclus ion 
The continuous emergence of new devices and cir-

cuit design techniqu es has led to the development of 

a wide range of behavioral modeling methods that 

facilitate design space exploration, optimization, and 

sensitivity analysis. This article discussed how the 

use of data mod eling techniques can be leveraged in a 

flexible modeling framework to facilitate domain ex-

perts in their modeling task. By way of example, accu-

rate behavioral models with good gen eralization and 

scalability were generated for EM bandstop filter and 

LNA modeling problems. Sample selection and model 

complexity setting were ha ndled fully autonomously. 

Future work includes the integratio n of more special-

ized fitting algorithms (such as [49] or [51]) as plug-

ins into the SUMO Toolbox so as to ensure maximum 

accuracy and interpretability of models for electronic 

devices and systems. 

For Further Information
The SUMO Toolbox framework which  was used for 

the tests, including all algorithms and features dis-

cussed here, is available under an open source license 

(AGPLv3) for download at http://www.sumo.intec.

ugent.be. The sof tware package contains a collection 

of demos, data sets, and examples. Additional docu-

mentation is also included, and a wiki page with in-

formation is available at http:// www.sumowiki.intec.

ugent.be. 
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