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Abstract—The use of Surrogate Based Optimization (SBO)
is widely spread in engineering design to reduce the number
of computational expensive simulations. However, “real-world”
problems often consist of multiple, conflicting objectives leading
to a set of equivalent solutions (the Pareto front). The objectives
are often aggregated into a single cost function to reduce the
computational cost, though a better approach is to use multiob-
jective optimization methods to directly identify a set of Pareto-
optimal solutions, which can be used by the designer to make
more efficient design decisions (instead of making those decisions
upfront). Most of the work in multiobjective optimization is
focused on MultiObjective Evolutionary Algorithms (MOEAs).
While MOEAs are well-suited to handle large, intractable design
spaces, they typically require thousands of expensive simulations,
which is prohibitively expensive for the problems under study.
Therefore, the use of surrogate models in multiobjective optimiza-
tion, denoted as MultiObjective Surrogate-Based Optimization
(MOSBO), may prove to be even more worthwhile than SBO
methods to expedite the optimization process. In this paper, the
authors propose the Efficient Multiobjective Optimization (EMO)
algorithm which uses Kriging models and multiobjective versions
of the expected improvement and probability of improvement
criterions to identify the Pareto front with a minimal number of
expensive simulations. The EMO algorithm is applied on multiple
standard benchmark problems and compared against the well-
known NSGA-II and SPEA2 multiobjective optimization methods
with promising results.

Index Terms—multiobjective optimization, Kriging, expected
improvement, probability of improvement

I. INTRODUCTION

This paper is concerned with efficiently solving complex,
computational expensive design problems using surrogate
modeling techniques [1]. Surrogate models, also known as
metamodels, are cheap approximation models for computa-
tional expensive (black-box) simulations. Surrogate modeling
techniques are well-suited to handle, for example, expensive
mechanical or electrical finite element simulations, or com-
putational fluid dynamic simulations. In particular, this paper
deals mainly with deterministic computer codes, as opposed
to non-deterministic (stochastic) problems.

Depending on the construction and usage of surrogate mod-
els, several modeling flavors can be distinguished. Surrogate
models can be built upfront to approximate the simulation code
accurately over the entire input (design) space and, hence,
can afterwards be used to replace the expensive code for
design, analysis and optimization purposes. On the other hand,
the construction of surrogate models can also be integrated
in the optimization process. Usually, the latter case, known
as Surrogate Based Optimization (SBO), generates surrogate
models on the fly that are only accurate in certain regions of

the input space, e.g., around potentially optimal regions.
Developing the most efficient surrogate models is an entire

research domain in itself. In order to come to an accept-
able model, numerous problems and design choices need to
be overcome (what data collection strategy to use, which
variables are relevant, how to integrate domain knowledge,
etc.). Other aspects of surrogate modeling include choosing
the right type of approximation model for the problem at
hand, a tuning strategy for the surrogate model parameters
(=hyperparameters), and a performance measure to assess the
accuracy of the surrogate model [2].

The focus of this work is the global SBO method based on
the Probability of Improvement (PoI) and Expected Improve-
ment (EI), popularized by Jones et al. [3]. These “statistical
criterions” guide the selection of new data points in such a way
that the objective function is optimized, while minimizing the
number of expensive simulations. The advantage of EI and PoI
is that, besides the prediction mean of the surrogate model, the
prediction variance (uncertainty) is taken into account as well,
providing a balance between exploration1 and exploitation2.
Most often EI or PoI is used in conjunction with the Kriging
surrogate model (Gaussian Processes) [4], but other surrogate
models are also possible, such as Radial Basis Functions
(RBF), Support Vector Regression (SVR) [5], etc.

The single-objective SBO problem is well described in
literature, however, most (if not all) “real-world” problems
actually consists of multiple, conflicting objectives leading to
a set of Pareto-optimal solutions. A multiobjective optimiza-
tion method can optimize the different objective functions
simultaneously, and try to find the Pareto front in just a
single run. Examples of such methods are primarily the
Multiobjective Evolutionary Algorithms (MOEAs), e.g., the
“Non-dominated Sorting Genetic Algorithm II” (NSGA-II;
[6]), the “Strength Pareto Evolutionary Algorithm 2” (SPEA2;
[7]) and the “S-Metric Selection Evolutionary MultiObjective
Algorithm” (SMS-EMOA; [8]).

Unfortunately, MOEAs typically require a massive amount
of function evaluations, which is infeasible for computational
expensive simulators. Hence, it is vital to economize on the
number of function evaluations, e.g., by using surrogate mod-
els. MultiObjective Surrogate-based Optimization (MOSBO)
methods only appeared quite recently in literature. Most work
is focused on integrating surrogate models in MOEAs [9].
Gaspar et al. use neural networks to either approximate the

1Improving the overall accuracy of the surrogate model (space-filling).
2Enhancing the accuracy of the surrogate model solely in the region of the

(current) optimum.
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fitness function or as a local approximation technique to
generate search points more efficiently [10]. Voutchkov et al.
[11] apply the NSGA-II algorithm to Kriging models instead
of the expensive simulator. For an overview of available
techniques and approaches, the reader is referred to [12], [13].

While the PoI and EI approach is well-developed and used
for single-objective SBO, its use in MOSBO is not well
spread. Single-objective versions of EI and PoI are utilized
by Knowles et al. [14], [15] to solve MOSBO problems. This
approach, known as ParEGO, uses Kriging and EI to optimize
a weighted sum of objective functions. By randomizing the
weights every iteration several solutions along the Pareto
front can be identified. More recently, Keane [16] proposed
multiobjective versions of PoI and EI with promising results.
Similarly to a weighted sum, the multiobjective versions of
EI and PoI aggregate information from the surrogate models
into a single cost function, balancing between exploration1 and
exploitation3. Unfortunately, only formulae for two objective
functions are given by Keane as the statistical criterions
become rather cumbersome and complex for a higher number
of objective functions.

The contribution of this paper is the Efficient Multiobjective
Optimization (EMO) algorithm which generalizes the multi-
objective versions of the PoI and EI criterion to an arbitrary
number of objective functions. In fact, the problem is quite
similar to calculating the hypervolume (a Pareto set quality
estimator) [17] as will be shown in this paper.

In section II the Kriging surrogate model is briefly dis-
cussed. An overview of the EMO algorithm is given in
section III-A. General expressions for PoI and EI are given in
section III-B. Subsequently, a fundamental part needed for the
calculation of the statistical criterions, the branch-and-bound
procedure, is discussed in section III-C. Afterwards, the EMO
algorithm is applied to functions from the DTLZ benchmark
suite [18] in section IV. Lastly, conclusions and future work
are described in section V.

II. KRIGING

Kriging is a popular surrogate model to approximate de-
terministic noise-free data, and has proven to be very useful
for tasks such as optimization [3], design space exploration,
visualization, prototyping, and sensitivity analysis [1].

A thorough mathematically treatment of Kriging is given
in [19], [20]. Basically, Kriging is a two-step process: first a
regression function h(x) is constructed based on the data, and,
subsequently, a Gaussian process Z is constructed through the
residuals.

Y (x) = h(x) + Z(x), (1)

where h(x) is a regression function and Z is a Gaussian
process with mean 0, variance σ2 and a correlation matrix
Ψ.

3Improving or augmenting the Pareto front.

Consider a set of n samples, (x1, . . . ,xn)′ in d dimen-
sions (see Equation 2) and associated function values, y =
(y1, . . . , yn)′, where (·)′ is the transpose of a vector or matrix.

X =
(
x1, . . . ,xn

)′
=

 x1,1 . . . x1,d

...
. . .

...
xn,1 . . . xn,d

 (2)

Essentially, the regression part is encoded in the n×p model
matrix F using basis functions bi(x) for i = 1 . . . p,

F =

 b1(x1) b2(x1) · · · bp(x1)
...

...
...

...
b1(xn) b2(xn) · · · bp(xn)

 ,

while the stochastic process is mostly defined by the n × n
correlation matrix Ψ,

Ψ =

 ψ(x1,x1) . . . ψ(x1,xn)
...

. . .
...

ψ(xn,x1) . . . ψ(xn,xn)

 ,

where ψ(·, ·) is the correlation function. ψ(·, ·) is parametrized
by a set of hyperparameters θ, which are identified by Maxi-
mum Likelihood Estimation (MLE) (though other approaches
are possible). Subsequently, the prediction mean and predic-
tion variance of Kriging are derived, respectively, as,

µ(x) = Mα+ r(x) ·Ψ−1 · (y−Fα), (3)

s2(x) = σ2

(
1− r(x)Ψ−1r(x)′ +

(1− F ′Ψ−1r(x)′)

F ′Ψ−1F

)
,

(4)
where M =

(
b1(x) b2(x) . . . bp(x)

)
is the model

matrix of the predicting point x, α is a p× 1 vector denoting
the coefficients of the regression function, determined by
Generalized Least Squares (GLS), and r(x) is an 1×n vector
of correlations between the point x and the samples X .

III. EFFICIENT MULTIOBJECTIVE OPTIMIZATION (EMO)

A. Overview

A flow chart of the EMO algorithm is shown in Figure
1. First an initial set of points X is generated and evaluated
on the expensive objective functions fi(x), for i = 1 . . .m.
Each objective function fi(x) is then approximated by a
Kriging model. Based on the Kriging models useful statistical
criterions can be constructed that help in identifying Pareto-
optimal solutions. In particular, a new point is selected by
optimizing the statistical criterion. Finally, the new point is
evaluated on the expensive objective functions fi(x), the
Kriging models are updated with this new information and this
process is repeated in an iterative fashion until some stopping
criterion is met.

Of particular interest are the Probability of Improvement
(PoI) and Expected Improvement (EI) statistical criterions,



Figure 1: Flow chart of the Efficient Multiobjective Optimiza-
tion (EMO) algorithm.

which are widely used for single-objective optimization [21],
[22]. Hence, it may be useful to extend the concept of the PoI
and EI to multiobjective optimization. Multiobjective versions
of the PoI and EI have been suggested by Keane [16] for two
objective functions, and later extended using the concept of
Level of Improvement (LoI; [23]). The LoI generates several
variants of PoI and EI by considering how many points in the
Pareto set are dominated by a new input point x, see Figure
2a. In this work, statistical criterions are defined based on a
minimal LoI value. For instance, the PoI with a minimum LoI
of three denotes the probability that a new point dominates
three or more points of the Pareto set. Logically, a LoI of
zero or greater then leads to the probability that a new point
extends or dominates the Pareto set. The statistical functions
are defined for an arbitrary number of objective functions in
section III-B.

In order to evaluate these statistical criterions, a branch-and-
bound procedure is presented in section III-C that decomposes
the overall objective space into a set of smaller hyperrectan-
gles. The upper and lower bounds of the hyperrectangles that
dominate or augment the Pareto front (depending on the LoI)
are used to evaluate the statistical criteria. This procedure can
be computationally expensive, but fortunately it has to be done
at most once per sampling iteration. Regardless, note that the
applicability of the EMO algorithm to large scale problems is
also limited by the Kriging model for > 20 dimensions and
> 10000 points.

B. Statistical criterions

The output of all the Kriging models can be considered as
mutually independent Gaussian random variables Yi(x),

Yi(x) ∼ N (µi(x), s2
i (x)) for i = 1 . . .m. (5)

The associated probability density function and cumulative
distribution function of Yi(x) are compactly denoted as,

φi[yi] , φi[yi;µi(x), s2
i (x)], (6)

Φi[yi] , Φi[yi;µi(x), s2
i (x)]. (7)

Given an initial set of n points X as in (2), a Pareto set
P can be constructed that comprises v ≤ n Pareto-optimal
(non-dominated) solutions,

P = {f(x∗1), . . . , f(x∗v)} . (8)

Each solution f(x∗i ) is essentially a vector that contains the
objective function values for an associated input point x∗i ∈ X ,
for i = 1 . . . v,

f(x∗i ) = (f1(x∗i ), . . . , fm(x∗i )) . (9)

As illustrated in Figure 1, the algorithm needs to select
a new point x whose solution f(x) extends or dominates a
minimum number of solutions in the Pareto set P according
to a given LoI. The probability that a new input point x yields
this improvement is denoted by the PoI P [I],

P [I] =

k∑
j=1

P

(
m⋃
i=1

(lji ≤ Yi(x) ≤ uji )

)
, (10)

where [lj ,uj] are non-overlapping hyperrectangles in the
objective space that dominate a minimum of LoI points of the
Pareto set P . Note that P [I] represents the probability that
the outcome of all Yi(x) is located inside one of the non-
overlapping hyperrectangles that dominate the Pareto set P ,
depending on the given LoI (see, e.g., grey hyperrectangles
in Figure (2a)). These hyperrectangles are non-overlapping,
and have a certain lower and upper bound [lj ,uj] that will be
computed in section (III-C).

The probability that the outcome of all Yi(x) is located
inside a single hyperrectangle of the sample space with lower
and upper bound [lji , u

j
i ] is given as,

P

(
m⋃
i=1

lji ≤ Yi(x) ≤ uji

)
(11)

=

ˆ uj
1

lj1

. . .

ˆ uj
m

ljm

(
m∏
i=1

φi[yi]

)
dym, . . . , dy1

=
m∏
i=1

(φi[u
j
i ]− φi[l

j
i ]).

While the PoI criterion is already quite useful and insen-
sitive to the scaling of the objective functions, it does not,
necessarily, encourage the generation of an uniform Pareto set.
The EI E[I] quantifies the amount of improvement and, thus,
prefers solutions that are lying farther from existing members
of the Pareto set. E[I] for an input vector x is defined as,

E[I] = P [I] ·

√√√√ m∑
i=1

αi(ŷi(x)− f ci ), (12)

where ŷ(x) denotes the centroid of the P [I] integral,
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Figure 2: Illustration of a Pareto set of two objective functions. The dots represent the Pareto points f i, for i = 1 . . . v, while
fmin and fmax denote the ideal and anti-ideal point, respectively. a) The shaded regions (hyperrectangles) denote the Level of
Improvement (LoI), namely, the number of Pareto points that are dominated by that region. b) The shaded regions (light and
dark) correspond to the sets of hyperrectangles identified by the branch-and-bound procedure using LoI = 0 (dominated or
augmented by the Pareto set) and ξ = 0. As the number of Pareto points increase, the regions close to the Pareto points will
likely be smaller and correspond to the small improvements over the Pareto set. Hence, a much faster, approximated, version
of the EMO algorithm can be used by ignoring the smaller regions, for example, the light shaded regions are not considered
anymore when using ξ = 0.1.

ŷi(x) =
k∑
j=1

ŷi(x; lj ,bj). (13)

Note that a predefined weight vector α allows a designer to
scale the objective functions in advance, although techniques
can be used to automatically identify them. The weighted
norm in (12) represents the Euclidean distance between the
centroid ŷ(x) and the solution in P that is located closest to
the centroid, i.e., f c,

f c = argmin
fc∈P

√√√√ m∑
i=1

αi(ŷi(x)− f ci ). (14)

The centroid ŷ over arbitrary integral bounds [l,b] is then
defined by,

ŷi(x; l,b) =´ u1
l1
...
´ um
lm

φ1[y1]...yiφ[yi]...φm[ym] dym...dy1/P [I] =
i−1∏
j=1

(Φj [uj)]− Φj [lj ])×
m∏

j=i+1

(Φj [uj)]− Φj [lj ])×

(µi(x)Φi[ui]−s2i (x)φi[ui]−µi(x)Φi[li]+s
2
i (x)φi[li])/P [I] (15)

C. Branch-and-bound procedure

To calculate the statistical functions defined in the previous
section, the integral bound of the region that improves the
Pareto set for a certain LoI needs to be identified. As this
region is non-rectangular and often irregularly shaped, espe-
cially for a higher number of objective functions, the integral

over that region is decomposed into a sum of k integrals over
smaller, connected (but non-overlapping) hyperrectangles, see
(10) and (13). While these integral bounds can be calculated
analytically upfront, as done in [16], this becomes rather
prohibitively complex and cumbersome for a higher number
of objective functions (> 2).

Instead, the authors propose to identify the integral bounds
using a computer algorithm. First, a pseudo Pareto set P̄ is
constructed by augmenting the Pareto set P with two addi-
tional points, namely, fmin − ε and fmax + ε for some ε > 0,
representing (−∞, . . . ,−∞) and (∞, . . . ,∞), respectively.
Where fmin is the ideal point and fmax is the anti-ideal point
of the Pareto set P . The grid defined by the coordinates of
the points in P̄ partitions the objective space in (v + 1)m

hyperrectangles, see Figure 2a. All points inside a single
hyperrectangle dominate (or augment) the exact same number
of Pareto points from the Pareto set P . Hence, to decide
whether a hyperrectangle dominates (or augments) the Pareto
set it suffices to only test one point of the hyperrectangle, e.g.,
the test point f test in the middle of the hyperrectangle.

The idea is to identify the smallest set of hyperrectangles,
and the associated integral bounds [lj ,uj ], that dominate (or
augment) the Pareto set for a certain LoI. To that end, a
binary partitioning strategy is employed that, starting from the
initial set of (v + 1)m hyperrectangles, recursively partitions
the objective space into smaller sets of hyperrectangles until
all hyperrectangles have been safely accepted or rejected based
on a boolean condition function g(f test;P, LoI), see Figure
2a. The condition function g(f test;P, LoI) evaluates whether
a test point f test dominates at least LoI Pareto points of
P . Consequently, a set of hyperrectangles can be readily
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Figure 3: Computation time of the integral bounds versus the number of Pareto points, for a different number of objective
functions. The exact EMO algorithm (ξ = 0) can be applied to four or five objective functions, depending on the density of the
Pareto set. By using a slightly approximated version of the EMO algorithm (ξ = 10−5) a higher number of objective functions
is possible..

accepted if the hyperrectangle lying closest to the anti-ideal
point satisfies the condition function. Due to the nature of
the condition function implicitly all the other hyperrectangles
in the set will also satisfy the condition function. Similarly,
a set of hyperrectangles can be immediately rejected if the
hyperrectangle closest to the ideal point does not satisfy
the condition function. In all other cases, i.e., the set of
hyperrectangles can neither be accepted nor rejected, the set
of hyperrectangles is divided along its longest edge (= binary
partitioning, though other divide steps can be used) according
to its enclosing hyperrectangle and the process is repeated on
both newly created sets of hyperrectangles.

After k << (v + 1)m sets of hyperrectangles (=integral
bounds) have been identified the actual PoI and EI statistical
criterions can be evaluated using Equations (10) and (13).
Note, that for evaluating the criterions the points fmin− ε and
fmax + ε are replaced by (−∞, . . . ,−∞) and (∞, . . . ,∞),
respectively.

The overall computation time may be a problem, however,
it is crucial to point out that the computational expensive
part of the algorithm, i.e., identifying the integral bounds,
is completely separated from the calculation of the final PoI
and EI criterions. Another key benefit is that one of the more
interesting Pareto set quality estimators, i.e., the hypervolume
indicator (see section III-D), is obtained with no additional
cost. Furthermore, the integral bounds need to be calculated
just once every iteration, and this only when the Pareto set
actually changed (improved or augmented) by the new point.
A last remark is that during the optimization process the
number of points on the Pareto set may actually decrease as
a new point can dominate former Pareto points. Only when
the objective space has been explored sufficiently the EMO
algorithm will converge to a more dense (and uniform) Pareto
set.

Nonetheless, it is almost infeasible to calculate the statistical
criterions for a high number of objective functions (≥ 5).
To that end, the algorithm can be modified to reject a set of
hyperrectangles early when its hypervolume becomes smaller
than some threshold ξ, namely, a fraction of the total hyper-
volume of the hyperrectangle enclosing the whole Pareto set.
The time savings are significant and allow the algorithm to

be applied to higher dimensional problems with some loss of
accuracy. The effect of neglecting the small hyperrectangles
is that as the intermediate Pareto set becomes denser, the
smaller regions will often be located closer to the Pareto set.
Hence, after a certain point in the optimization process small
improvements to the Pareto set (whether by improving it or
augmenting the front) will not be considered anymore by the
EI and PoI criterions, see Figure 2b. Of course, at that point,
the intermediate Pareto set might be dense enough for the
problem at hand. Still, a possible solution to alleviate this issue
is to use an initial rough approximation (ξ > 0) of the integral
bounds, and update the integral bounds exact (ξ = 0) every
iteration instead of recalculating them, taking full advantage of
the sequential design (adaptive sampling) step in the surrogate
modeling process.

For all of the above reasons and considering the expensive
nature of the optimization problems, the EMO algorithm can
be applied to problems with four or five objective functions
with no accuracy loss (depending on the density of the Pareto
solutions), while the approximated version of the multiobjec-
tive EI and PoI can be used for a higher number of objective
functions. A plot with the practical computation time of the
integral bounds is shown in Figure 3, applying the EMO
algorithm with ξ = 0 and ξ = 10−5 to sets of Pareto points
randomly drawn from the first quadrant of a unit sphere. Note
that the computation time may actually change with different
shapes of the Pareto set.

D. Hypervolume

There exists several quality estimators for multiobjective
optimization. Arguably, one of the better quality estimators is
the hypervolume [17], as it has the desired property of strict
Pareto compliance, namely, a Pareto set A is considered better
than Pareto set B if and only if A dominates B. In essence,
the hypervolume indicator computes the size (hypervolume or
Lebesgue integral) between the (intermediate) Pareto set and
some reference point r. This reference point r needs to be
dominated by all points of the (intermediate) Pareto set (at
all times if calculated each iteration during the optimization
process). Larger values of the hypervolume indicate a better
Pareto set. Note that the dominated hypervolume (or S-metric)



Table I: Summary of the DTLZ benchmark functions.

Function d m reference point r
DTLZ2 6 inputs 3 objectives (2.5, 2.5, 2.5)
DTLZ7 6 inputs 4 objectives (1, 1, 1, 50)
DTLZ5 6 inputs 6 objectives (2.5, 2.5, 2.5, 2.5, 2.5, 2.5)

has also been used in MOEAs to drive the multiobjective
optimization process [8].

Unfortunately, computing the hypervolume does not scale
very well with the number of objective functions m and the
number of Pareto points v. Though exact algorithms [24] as
well as approximations [14] and alternative versions of the
hypervolume problem, e.g., finding the Pareto point(s) that
contributes least to the hypervolume [25], have been suggested
in literature. The EMO algorithm is quite similar to the
hypervolume problem. Whereas the hypervolume can be seen
as the Lebesgue integral of the hyperrectangle that dominates
the Pareto set, the EMO algorithm needs to calculate an
integral over that same hyperrectangle, i.e., if LoI = 0, for
a different integrand. Moreover, the statistical criterions are
functions with respect to a point x. Hence, the EMO algorithm
identifies the integral bounds in a pre-processing step so that
afterwards the statistical criterions can be evaluated multiple
times (with different x). Likewise, the EMO algorithm can be
leveraged to calculate the hypervolume as follows.

Assuming the bounds [lj ,uj ] for j = 1 . . . k have been
calculated for LoI = 0, then the hypervolume H(r) can be
expressed as,

H(r) =
m∏
j=1

(
rj − fminj

)
−

k∑
j=1

(ˆ uj
1

lj1

. . .

ˆ uj
m

ljm

1 dym . . . dy1

)
,

(16)
where fmin − ε and fmax + ε from the branch-and-bound
procedure are here replaced by just fmin and r, respectively.
Note that when the EMO algorithm is configured with ξ > 0
the calculated hypervolume is an overestimation. Lastly, the
hypervolume is a relative error as the reference point r must
be chosen identical when comparing Pareto sets generated by
different multiobjective optimization algorithms.

IV. EXAMPLES

A. Introduction

A good set of configurable multiobjective benchmark prob-
lems has been proposed by Deb et al. [18], of which three
benchmark functions are chosen and adapted slightly to
benchmark the EMO algorithm. A summary of the selected
benchmark functions is found in Table I. For a complete
description of the benchmark functions the authors refer to
[18].

All benchmark functions are configured to have six input
parameters. Specifically, the first example is the DTLZ2 func-
tion with three objective functions where the Pareto front is
the first quadrant of an unit sphere centered on the origin. The
second example is the DTLZ7 function with four objective
functions which has 2m−1 = 24−1 = 8 disconnected Pareto-
optimal regions in the objective space. The last example, the

DTLZ5 function configured to have six objective functions,
is similar to DTLZ2 except that the Pareto front is just one
slice of the unit hypersphere, i.e., the Pareto front is a (densely
populated) curve in a m = 6 dimensional objective space.

B. Experimental setup

An initial set of 65 samples is generated by a near-optimal
maximin Latin Hypercube Design (LHD; [26]). Subsequently,
the EI criterion is optimized each iteration to select the
next point to evaluate. In particular, the condition function
is configured with LoI = 0 is, namely, g(f test;P, LoI =
0) = ∃f ∈ P : f test1 < f1 ∨ . . . ∨ f testm < fm. Furthermore,
the optional weight vector α is set to 1 for all benchmark
functions, except for DTLZ7 where α = (1, 1, 1, 0.02). Two
EMO runs are applied to each benchmark function, the first
run is configured with ξ = 0 (exact version of the EI) and the
other run has ξ = 10−5 (slightly approximated version of the
EI). Except for the DTLZ5 benchmark function, where only
the second EMO run is applied, i.e., ξ = 10−5.

The EI criterion is optimized using a combination of Monte
Carlo sampling and a local search. Specifically, 100×n Monte
Carlo candidate points are generated and evaluated on the
EI criterion. Subsequently, the best Monte Carlo candidate is
further refined using Matlab’s fmincon optimizer.

Lastly, the Kriging models are configured using the
Matérn correlation function [27] with ν = 3

2 while
the hyperparameters (=length scales) are optimized us-
ing SQPLab [28] (http://www-rocq.inria.fr/~gilbert/modulopt/
optimization-routines/sqplab/sqplab.html), utilizing likelihood
derivative information. The EMO algorithm halts when the
sample budget is met, namely, 250 samples.

The EMO algorithm runs are compared against the NSGA-II
and SPEA2 evolutionary algorithms with a varying population
size and maximum number of generations. The first run is
configured with a population size of 25 and a maximum
number of generations of 10 (total sample budget 250) and
the second run is configured with a population size of 50 and
a maximum number of generations of 50 (total sample budget
2500). The remaining parameters have been left to their default
values.

C. Results

Results for the benchmark functions have been summarized
in Table II. The EMO runs outperform NSGA-II and SPEA2
for each DTLZ function in terms of hypervolume score as well
as number of samples. Surprisingly, the EMO (ξ = 10−5) run
achieves a higher hypervolume score than the EMO (ξ = 0)
run. This can be explained by the fact that EMO (ξ = 10−5)
spends less samples on the small (but certain) improvements
and more samples on the larger (less certain) improvements.
For the benchmark functions considered in this paper the
Kriging models are accurate enough to correctly predict the
larger improvements. Evidently, this may not be the case for
other optimization problems. A plot of the EI criterion is
shown in Figure 4 for the DTLZ7 benchmark function.



Table II: Results of the EMO algorithm, NSGA-II and SPEA2. The EMO algorithm consistently outperforms the two MOEAs
on the hypervolume for all benchmark functions. Furthermore, EMO (ξ = 10−5) is slightly better than EMO (ξ = 0) which can
be attributed to the fact that EMO (ξ = 0) makes small iterative improvements while for EMO (ξ = 10−5) these improvements
are not considered (see section III-C) and the focus is more on larger (uncertain) improvements.

Algorithm Sample budget Initial hypervolume (ξ = 0) Final hypervolume (ξ = 0)

DTLZ2

EMO (ξ = 0)

250

13.9649 14.9225
EMO (ξ = 10−5) 13.9649 14.9439

NSGA-II 12.3514 13.6284
SPEA2 unknown 14.4873

NSGA-II 2500 13.5980 14.6953
SPEA2 unknown 14.8503

DTLZ7

EMO (ξ = 0)

250

27.4022 42.7030
EMO (ξ = 10−5) 27.4022 42.9865

NSGA-II 16.7547 18.0841
SPEA2 unknown 37.4830

NSGA-II 2500 23.4465 28.1785
SPEA2 unknown 42.1191

DTLZ5

EMO (ξ = 10−5)
250

193.5089 196.8646
NSGA-II 178.5896 192.0376
SPEA2 unknown 192.6617

NSGA-II 2500 184.9897 193.9606
SPEA2 unknown 194.3750
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Figure 4: Contour plots of the expected improvement criterion for the DTLZ7 function (based on four Kriging models of 250
samples) where x3 = −1, x3 = 0 and x3 = 1, respectively. The remaining variables are set fixed to x4 = x5 = x6 = −1, i.e.,
the location of the real Pareto front. The dots represent (a projection of) the samples, the larger a dot the closer the sample is
to the actual slice.

While the EMO algorithm clearly outperforms NSGA-II and
SPEA2 in the number of expensive samples and hypervolume
score there are some limitations. The EMO algorithm, and
other MOSBO techniques, rely on the quality of the surrogate
model to guide the selection of new expensive data points.
While the Kriging models do not have to be accurate at the
start of the algorithm when using the EI and PoI criterions,
the Kriging models should be able to capture the objective
functions accurately when enough samples become available,
which might not always be the case. Furthermore, the cal-
culation of the statistical criterions comes at a computational
cost, similar to the computational cost of MOEAs that rely
on the hypervolume, which might limit the practical usage
of the EMO algorithm for some (less expensive) optimization
problems.

A plot of the computation time of the branch-and-bound
procedure versus the number of samples for the DTLZ7
function is shown in Figure 5. Initially, the computation time
increases quite rapidly as the expected improvement criterion
focuses on exploration which leads to the extension of the
current, sub-optimal Pareto set. After enough samples have
been obtained (at approximately 90 samples) the Kriging
models are accurate enough to allow detection of points that

improve on the Pareto set (exploitation). In effect, reducing the
size of the Pareto set and, hence, decreasing the computation
time of the branch-and-bound procedure. Only when the Pareto
set is sufficiently improved, more points are selected that
augment the Pareto set and the computation time increases
again. Note that the computation time is often zero, meaning
that the Pareto set has not been changed since the previous
iteration and thus the integral bounds do not need to be
recalculated.

V. CONCLUSION

The authors presented the Efficient Multiobjective Opti-
mization (EMO) algorithm, which uses multiobjective ver-
sions of the Expected Improvement (EI) and Probability of
Improvement (PoI) to identify the Pareto front with a limited
sample budget. The EMO algorithm is compared against the
well-known SPEA2 and NSGA-II evolutionary methods with
promising results. In theory an arbitrary number of objective
functions can be handled. However, in practice due to the
nature of the multiobjective EI and PoI statistical criterions
EMO also does not escape the curse of dimensionality (no-
free-lunch theorem) with respect to the number of objective
functions and number of Pareto points. The suggested method
already circumvents the largest computation cost and can eas-
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Figure 5: Computation time of the integral bounds versus the number of samples of the exact EMO (ξ = 0) run for the DTLZ7
function.

ily generate fast approximated versions of the multiobjective
criterions with little loss of efficiency. This is illustrated in the
benchmark examples.

Future work will focus on leveraging the ideas of several
hypervolume calculation routines that exist in literature for
a more efficient calculation of the EI and PoI criterions.
Furthermore it may be useful to consider an update scheme
for the integral bounds, which will be considerable more
efficient than recalculating the integrals bounds almost each
iteration. Indirectly, a speedup can also be achieved by select-
ing multiple update points at a time. In addition, the EMO
algorithm will be compared against other MOSBO techniques
and more recent MOEAs, e.g., SMS-EMOA. Finally, the effect
of using the approximated statistical criterions will be further
investigated.
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