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Fully Parameterized Macromodeling of S-Parameter
Data by Interpolation of Numerator & Denominator

Dirk Deschrijver, Member, IEEE, and Tom Dhaene, Senior Member, IEEE

Abstract—A robust approach for parametric macromodeling of
tabulated frequency responses is presented. An existing technique
is modified in such a way that interpolation is performed at the nu-
merator and denominator level, rather than the transfer function
level. This enhancement ensures that the poles of the parametric
macromodel are fully parameterized. It strengthens the modeling
capabilities and improves the model compactness.

Index Terms—Interpolation, parameterized systems, para-
metric macromodels, rational transfer functions, vector fitting.

I. INTRODUCTION

P ARAMETRIC macromodeling techniques are very
important for the design, study and optimization of

microwave structures and systems. Such macromodels approx-
imate the frequency response of a system that is parameterized
by one or more design variables. They are particularly useful
for real-time design-space exploration, design optimization
and sensitivity analysis. The calculation of such macromodels
is not a trivial task, and many different approaches have been
investigated, e.g., see [1]–[6] and the references therein.

This letter will focus on one of the techniques that was
published recently. In [2], it was proposed to compute a set of
one-dimensional macromodels (also called univariate nodes)
for different values of the design variables. These nodes are then
subsequently combined into a multi-dimensional parametric
macromodel by interpolating their input-output port responses
with the barycentric interpolation formula [7]. This concept,
also known as “transfer function interpolation”, has been
applied succesfully and several modifications of the modeling
approach have been reported in literature [4].

In some specific cases, it was found that transfer function
interpolation has some shortcomings which are related to the
accuracy and the efficiency of the model. If the poles of the
macromodel must travel long distances in the complex plane
inbetween the nodes, the response of the model may deviate
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from the behavior that is expected [5]. Also the efficiency and
compactness of the models is not optimal, since the number of
poles grows artificially with the number of nodes [6].

The goal of this letter is to address these issues, and to present
a solution that is based on the approach in [2]. It is shown that
interpolation at the numerator and denominator level leads to a
fully-parameterized modeling procedure that is more effective
than transfer function interpolation. The benefits of the approach
are demonstrated by applying it to two examples, including a
double folded stub filter.

II. CALCULATION OF THE UNIVARIATE NODES

The parameterized frequency response of a device is char-
acterized by a set of data samples
where represents the frequency variable, is a design
variable, and is the corresponding transfer function. For

discrete values of the design variable , a set of
one-dimensional frequency-dependent macromodels
are computed by applying Vector Fitting [8] to the simulated
frequency responses. These models, also called univariate nodes
in [2], are fitted using the same number of poles. The stability
of these models is ensured by means of a simple pole-flipping
scheme, and passivity can be enforced a posteriori using various
passivity enforcement techniques [9].

III. TRANSFER FUNCTION INTERPOLATION

It was proposed in previous work [2] to combine the nodes
into a parametric (bivariate) macromodel by interpolating them
at the transfer function level with Barycentric interpolation [7]

(1)

An interesting property of interpolation formula (1) is that it pro-
vides a rational interpolation of the nodes as a function of , for
any choice of non-zero weights [7]. A closer inspec-
tion of (1), however, reveals that the parametric macromodel
is in fact an -weighted sum of the nodes. Hence, the evalu-
ation of (1) for intermediate values of yields a higher-order
macromodel that contains all the poles of all the nodes. Since
these poles are fixed (i.e., not parameter-dependent), the model
response inbetween the nodes can sometimes appear different
from the response that is normally expected [5]. In some cases,
these two drawbacks may limit the accuracy and efficiency of
the modeling approach [6].
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IV. NUMERATOR/DENOMINATOR INTERPOLATION

This section presents a modified approach that solves the dif-
ficulties mentioned in Section III, by applying Barycentric in-
terpolation to the numerator and denominator polynomials. For
notational convenience, each element on row and column
of transfer matrix is denoted as .

A. Macromodel Representation

Since each matrix element is modeled by
a partial fraction expansion, it can easily be written as the
ratio of a numerator and monic denominator

. Rather than applying Barycentric interpolation to
the input-output transfer function, it is proposed to apply the
same procedure to numerators and denominators individually

(2)

It is found that this approach does not artificially increase
the number of poles, since in (2) constitutes an

-weighted sum of denominator polynomials that have the
same degree. Another clear advantage over the approach
in (1) is that the denominator polynomial , and
consequently also the poles of the model, become param-
eter-dependent in terms of . This means that the poles of
model (2) are fully parameterized, as opposed to the fixed-pole
solution of (1).

B. Simplified Model Expression

For most physical systems, the response of the models
varies smoothly when the value of a design variable

is changed. Therefore, the barycentric weights in (2) are
usually chosen in such a way that the interpolation in terms of

is polynomial rather than rational. In this case, the weights
and in (2) are computed solely from the parameter

values of the nodes [7]. Therefore, one can choose as

(3)

The use of common weights allows the simplifi-
cation of interpolation formula (2) into an elegant expression

(4)

Note that this compact representation is closely related to [1].

Fig. 1. Parameterized 2-pole macromodel.

V. EXAMPLE: 2-POLE MACROMODEL FROM [5]

As a first example, a parameterized 2-pole macromodel is
taken from [5], which illustrates the shortcomings of the transfer
function interpolation scheme. The macromodel is defined as

, and its response is considered
as a function of parameter over the frequency
range . Both schemes in Sections III and IV are
used to interpolate two nodes, and , and the
model response is compared at intermediate values of , e.g., at
the midpoint . As shown in Fig. 1, an interpolation of the
transfer matrix (blue curve) yields a 4-pole macromodel with

that deviates strongly
from the true model response. By interpolating the numerator
and denominator polynomials separately (red curve), the model
is able to fit the movement of the peak with an excellent accuracy
using only 2 poles. Note that this also corresponds to the correct
model order of .

VI. EXAMPLE: DOUBLE FOLDED STUB FILTER

As a second example, the reflection coefficient, , and
transmission coefficient, , of a double folded stub mi-
crowave filter are modeled using the new interpolation scheme.
A parameterized macromodel is computed as a function of
the frequency, GHz, and a varying stub length,

mm, as shown by the layout in Fig. 2. The substrate
has a relative permittivity of and a thickness of 0.127
mm, while the spacing between the stubs is set to 0.175 mm.
The frequency response is simulated for eight different values
of the stub length , which are equidistantly spread over the
parameter range of interest. These frequency responses are
subjected to the Vector Fitting procedure in order to compute
several 9-pole univariate nodes. Figs. 3 and 4 show the response
of the parameterized macromodel when evaluated over a dense
set of parameter values. The bold (black) lines match with
the frequency response of the nodes, whereas the thin (red)
lines in between them are interpolated responses of the model.
It is shown that the model is able to capture the dynamical
behavior of the data and the movement of the resonances in
an accurate way. Fig. 5 visualizes the trajectories of the poles,
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Fig. 2. Layout double folded stub filter.

Fig. 3. Magnitude of � as function of frequency and length � (8 nodes).

Fig. 4. Magnitude of � as function of frequency and length � (8 nodes).

which are found by computing the roots of in (2) or
in (4) for several discrete values of . For any value

of , the number of macromodel poles is at most 9, and does
not grow with the number of nodes , as desired.

VII. DISCUSSION

A multivariate extension of the approach is straightforward,
since the barycentric interpolation formula can be applied re-
cursively to the numerators and denominators of lower-dimen-
sional models (i.e., and in (2) or and in (4)), as in
Section III.C of [2]. Future work will focus on stability and pas-
sivity enforcement of the parameterized macromodels (2) and
(4) by using specific interpolation schemes [10] and/or applying

Fig. 5. Trajectories of the parameterized poles ��� as function of length �.

perturbations to the barycentric weights [i.e., and , re-
spectively, in (2), or in (4)] as proposed in [2].

VIII. CONCLUSION

A modified interpolation scheme is proposed for parametric
macromodeling of frequency-domain responses. The method
starts by computing several univariate macromodels for dif-
ferent instances of a design variable. These models are then
combined into a multivariate macromodel by interpolating
the numerator and denominator polynomials, rather than the
transfer function. It is shown that this approach avoids pole
redundancies in the model, and improves the interpolation
capabilities of the macromodel inbetween the nodes [2].
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