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Abstract 

In this contribution a novel stochastic Galerkin method is 
proposed to analyze the parameter variability of uniform on­
chip interconnects. This eff cient and accurate stochastic mod­
eling method is made possible, spec if cally for on-chip inter­
connects, by f rst constructing parameterized macro models of 
the per unit length transmission line parameters. The theory is 
illustrated by means of a numerical example, i.e. an inverted 
embedded microstrip line, of which the variability is analyzed 
in both the frequency and the time domain. A comparison with 
a standard Monte Carlo technique validates the new approach. 

Introduction 

It is a well-known fact that manufacturing tolerances are 
playing a signif cant role during the design of on-chip intercon­
nect structures. Increasing signaling speeds and further minia­
turization only add to the problem. Therefore, to assess sig­
nal integrity behavior, circuit designers need to have access to 
powerful modeling tools that also allow predicting parameter 
variability effects in acceptable time. 

Recent research efforts have led to a stochastic modeling 
technique, especially conceived to study parameter variability 
of uniform transmission lines, such as traces on boards [1] and 
cable harnesses [2]. To this end, a Polynomial Chaos (PC) ex­
pansion of the pertinent Telegrapher's equations in combination 
with a Galerkin weighting was put forward. This technique is 
called the Stochastic Galerkin Method (SGM) and has proven 
to be very effective for this kind of problem. Unfortunately, the 
technique is not readily extended to on-chip interconnect struc­
tures, as it makes use of basic numerical or heuristic models for 
the per unit length (p.u.l.) parameters of the transmission lines 
at hand, also assuming that these p.u. 1. parameters are indepen­
dent of frequency. For on-chip interconnects, in the presence 
of semiconductors, the computation of these p.u.l. parameters 
is not straightforward. 

In [3], a simple but robust Monte Carlo (MC) analysis tech­
nique was implemented for an on-chip line, being an inverted 
embedded microstrip (IEM) line. The manufacturing process 
(etching or electrolytic growth) yields a line with a random 
trapezoidal cross-section, rather than a rectangular one. Via 
MC analysis, the effects on signal integrity of this randomness 
was studied. The MC approach was made tractable thanks to 
a two-step approach. First, the p.u.1. parameters of the IEM 
line were accurately computed using a two-dimensional (2-D) 
electromagnetic (EM) modeling technique, leading to a set of 
tabulated data. All high-frequency phenomena and loss mech­
anisms, leading to skin-effect, slow-wave effect, etc, were ac­
counted for. Second, these tabulated p.u. 1. parameters were con­
verted into parameterized macromodels. Once these analytical, 
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closed-form expressions are available, a rapid implementation 
of the MC runs is possible. 

In this contribution, an SGM for the single IEM line is pro­
posed. In contrast to previous work [1] and [2], an SGM analy­
sis can be implemented by making use of parameterized macro­
models of the p.u.l. parameters. Of course, as will be demon­
strated here, this novel SGM largely outperforms the MC anal­
ysis of [3], both in terms of speed and accuracy. The effects 
on signal integrity of the randomness of the trapezoidal cross­
section of the line are assessed. In this contribution, the focus 
is on a single line with a single stochastic parameter, studied in 
both frequency and time domain, whereas in [4] general multi­
conductor on-chip lines with multiple stochastic parameters are 
studied in frequency domain. 

Macromodeling based SGM for a single on-chip line 

Consider the following Telegrapher's equations for a single 
uniform transmission line: 

d 
dz V(z,s,tI) = -Z(s,tI)J(z,s,tI), (1) 

d 
d/(z,s,tI) = -Y(s,tI) V(z,s,tI), (2) 

where V(z, s, tI) and J(z, s, tI) are the voltage and the current 
along the line, which are function of the distance z along the 
line and the complex frequency s = j27r f. They also depend 
on the stochastic parameter tI. This latter can be a material pa­
rameter or a geometrical parameter. In this contribution (see 
further), tI determines the shape of the cross-section of the line. 
Often, a normalization of the stochastic parameter is put for­
ward as follows: 

(3) 

where f.Lf3 and 1Jf3 represent the mean and the normalized stan­
dard deviation of tI, respectively, and with � the corresponding 
normalized stochastic parameter. For example, in the case that 

tI is a Gaussian random variable (RV), � has a standard normal 
distribution 

1 'e WE(�) = J2;=e-2 . (4) 

The p.u.1. impedance and admittance, Z(s, tI) and Y(s, tI) re­
spectively, are also frequency dependent and inf uenced by tI. 
These quantities can be further decomposed into the well­
known p.u.l. resistance R( s, tI) (in DIm), inductance L( s, tI) (in 
Lim), conductance G(s, tI) (in S/m) and capacitance C(s, tI) 
(in F/m), as follows: 

Z(s, tI) = R(s, tI) + s L(s, tI), 

Y(s, tI) = G(s, tI) + s C(s, tI)· 
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(5) 

(6) 



The two-step approach, proposed in [3] , is applied. First, the 
p.u.i. parameters are very accurately computed using the 2-D 
EM solver presented in [5, 6] . This solver starts from a quasi­
TM assumption of the f elds, which is a valid assumption for 
the small interconnects under consideration. Making use of a 
Dirichlet-to-Neumann boundary operator and a careful formu­
lation of the circuit currents in the presence of the semiconduc­
tors, the complex capacitance and complex inductance prob­
lems are cast as boundary integral equations (BIEs), taking into 
account all substrate loss mechanisms and the f nite size, con­
ductivity and shape of the metallic interconnect. Solving the 
BIEs leads to a set of tabulated RLGC-data, being a function of 
the frequency f and of the stochastic parameter (3. Second, the 
data samples so obtained are used as input for a macromodeling 
procedure. This results in the following closed-form expression 
for the p.u.i. impedance and admittance: 

v v 
xmm(s, (3) = L wvxumm(s, (3v) II ((3 - (3k), (7) 

v=l k =l k#v 
where X stands for Z and Y. The bivariate parameterized 
macromodels (7) are constructed by f rst keeping the param­
eter (3 f xed, leading to a set of V univariate rational macro­
models xumm(s, (3v), obtained via a Vector Fitting (VF) [7-9] 
procedure, and then stringing these rational models together 
by means of barycentric Lagrange interpolation [10] . The 
frequency-dependency can be accurately captured using the 
proposed rational modeling via VF; the variation of the p.u.1. 
parameters w.r.t. (3 is usually rather smooth, hence, a careful 
choice of the barycentric weights Wv leads to a polynomial in­
terpolation (7). 

At this point, the procedure starts to differ from the one pre­
sented in [3] . Instead of solving the Telegrapher's equations ( 1) 
and (2) for many samples of the parameter (3, drawn accord­
ing to its stochastic distribution, as prescribed by MC, an intru­
sive stochastic solution method is now applied. In this proce­
dure, f rst, the known p.u.i. parameters and the unknown volt­
age and current are expanded into a set of K + 1 basis func­
tions {¢df:=o, as follows: 

K 

xmm(s, (3) = L Xk(s) ¢ k(� ) ' (8) 
k=O 
K 

V (z,s,(3) = LVk(Z,S)¢k(�)' (9) 

k=O 
K 

I(z,s,(3) = Lh(z,S)¢k(O. (10) 
k=O 

The basis functions are orthogonal polynomials, chosen accord­
ing to the Wiener-Askey scheme [11] .  For example, for the case 
of a Gaussian RV, {¢ k}f:=O is a set of Hermite polynomials, and 
their orthogonality is expressed using the proper inner product 
and w.r.t. the weighting function (4): 
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where 6km is the Kronecker delta. Given this orthogonality, the 
(K + 1) expansion coeff cients of the known p.u.i. parameters 
are given by: 

X ( ) = 

<xmm(S,(3)'¢k(O> k s k! ' k = 0, ... , K. (12) 

Thanks to the macromodeling procedure, these numbers X k (s ) 
can now be calculated very eff ciently and accurately, as numer­
ical integration schemes are no longer required. Substitution 
of (8), (9) and (10) into (1) and (2), yields a set of 2(K + 1) 

coupled differential equations in the 2 (K + 1) unknown expan­
sion coeff cients Vk (z, s) and h (z, s) for the voltages and the 
currents along the line, respectively. These new equations are 
still dependent on the stochastic parameter (3, or rather, on its 
normalized counterpart �. This dependency is now removed by 
Galerkin weighting of these equations, using the same set of 
test functions {¢m}:'=o, yielding the following result: 

with 

d K K 

dz Vm(z, s) = - L L (XklmZk(S)II(z, s), (13) 
k=OI=O 

d K K 

d/m(z, s) = - L L (XklmYk(S)Vt(Z, s), (14) 
k=OI=O 

for all m = 0, . . .  , K. The equations (13) and (14) represent 
a matrix ordinary differential equation (ODE) in the 2(K + 1) 

unknown expansion coeff cients for the voltage and the current, 
which no longer depends on �. After introduction of the proper 
boundary conditions, as explained in [1] , this ODE can be 
solved using standard techniques. The f nal solution is obtained 
by substituting the expansion coeff cients Vk (z, s) and h (z, s), 
k = 0, . . . , K, back into (9) and (10), yielding closed-form 
expressions for the voltages and currents of the lines as func­
tion of the position z, the complex frequency s, and the RV (3, 
for which a pertinent distribution, e.g. Gaussian, was assumed. 
From this result, stochastic moments or functions can be com­
puted, using standard techniques [12] . This is demonstrated in 
the next section. 

Results 

We consider the IEM line of [3] , and compare the MC ap­
proach with the new SGM of the previous section. The IEM 
line has a cross-section as shown in Fig. 1. This particular in­
terconnect is embedded in a layered substrate consisting of a 
30 /-lm thick doped silicon substrate, with a relative permittiv­
ity of 11. 7 and a conductivity of 10 Slm, and a 11.4 /-lm thick 
Si02 insulator, with a relative permittivity of 3.9 and loss tan­
gent ofO.001. The ground plane is placed on top of the layered 
substrate and it is made out of 3 /-lm thick Aluminum with a 
conductivity of 3.77 . 107 S/m. The signal conductor is found 
at a height of 6.4 /-lm above the semiconductor-insulator inter­
face. It is made out of 2 /-lm thick Aluminum. Whereas the 
top side of this line's cross-section is f xed to 2 /-lm, the base (3 
is considered to be random. The random trapezoidal shape, so 



Aluminum: cr = 3.77· 107 Sim 

Si02 : €r = 3.9, tan c5 = 0.001 

Silicon: €r = 11.7, cr = 10 Sim 

Figure 1: Cross-section of the IEM line (not on scale). 

obtained, is induced by the manufacturing process (etching or 
electrolytic growth). In the remainder of this contribution it is 
assumed that fJ is a Gaussian RV with a mean i-lf3 = 2 i-lm and 
a normalized standard deviation 0"f3 = 10%. With this IEM 
line a source-line-load conf guration is now constructed. The 
line is given a length of L = 1 mm. At its near end a low­
impedance voltage source, with an internal impedance of 1 n, 
is connected. At the far end, the line is terminated by a ca­
pacitive load ZL = (s CL + 1/ RL)-l, with CL = 1 pF and 
RL = 1 kn. 

In the frequency domain, using a voltage source of 1 V ,  the 
variability of the output voltage VL(s, fJ) == V(z = L, s, fJ) at 
the load is studied over a broad frequency range up to 100 GHz 
(Fig. 2(a)). In Fig. 2(b) there is zoomed in on the resonance 
around 7 GHz. The full black line indicates the mean i-lIVLI of 
this output characteristic and the dashed lines show the ±30"1VL I 
deviations from this mean i-lIVL I, both computed using the novel 
SGM technique. These results are compared to the ones of [3] , 
where an MC run was performed using 50000 samples of the 
RV fJ, drawn according to the appropriate Gaussian distribu­
tion. The gray lines on Fig. 2 correspond to 100 samples of this 
MC run; the circles (0) and squares (D) indicate the mean i-lIHI 
and the ±30"1HI deviations, respectively, computed using the 
50000 samples. (For clarity, the circles and squares are not 
shown on Fig. 2(a).) It can be observed that the novel technique 
and the MC run are in perfect agreement. The eff ciency of the 
SGM is however much higher. On a standard laptop, the analy­
sis leading to Fig. 2 is completed in 0.13 s when leveraging the 
SGM, while 4.13 s are needed for the MC run. So, a signif cant 
speed-up factor of 32 is realized. (Both the SGM and the MC 
analysis rely on the same macromodels of the p.u.1. parameters, 
which are constructed off ine. Including all necessary 2-D EM 
simulations, this takes about 140 s on a standard laptop.) Apart 
from comparing stochastic moments, also, complete stochastic 
functions, such as the probability density function (PDF) and 
the cumulative distribution function (CDF) can be computed. 
This is demontrated in Fig. 3, where the PDF and CDF of the 
magnitude of the output voltage are shown at 7 GHz. Com­
paring the SGM with MC again leads to the conclusion that 

excellent accuracy is obtained. 
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Figure 2: Bode plot of the magnitude of the output volt­
age VL(s, fJ) for the single IEM line. Full black line: 
mean i-lIVL I computed using the novel technique; Dashed 
black line: ±30"1VL I-variations computed using the novel tech­
nique; Gray lines: 100 samples from the MC run; Circles 
(0) : mean i-lIVL I computed using MC technique; Squares (D) : 

±30"IVLI-variations computed using MC technique. 

After a post-processing step and in the presence of linear ter­
minations, the frequency-domain results can be used to perform 
a transient analysis. We use the same source-line-load conf gu­
ration as described above, but now the voltage source produces 
a ramped step, going from 0 V to 1 V in a rise time of 50 ps. So, 
the voltage VL( t) at the load becomes a function of the time t 
and we compute the maximum voltage overshoot at the load, i.e. 
maXt>o(VL(t)). The PDF and CDF of this quantity are shown 
in Fig� 4, again validating our new approach. Figures as Fig. 4 
also provide valuable information for interconnect designers. 

Conclusions 

In this contribution a novel stochastic modeling procedure 
to study the inf uence of parameter variability on the signal 
integrity of an on-chip interconnect was outlined. First, the 
p.u.1. parameters of the line need to be accurately computed. 
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Figure 3: PDF and CDF of the magnitude of output volt­
age Vds,,8) at 7 GHz for the single IEM line. Full black line: 
PDF computed using the novel technique; Dashed black line: 
CDF computed using the novel technique; Circles (0): PDF 
computed using the MC technique; Squares (D) : CDF computed 

using the MC technique. 
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Figure 4: PDF and CDF of the overshoot, i.e. the maximum 
value of Vd t). Full black line: PDF computed using the novel 
technique; Dashed black line: CDF computed using the novel 
technique; Circles (0): PDF computed using the MC technique; 

Squares (D): CDF computed using the MC technique. 

To this end, a two-step approach was used, combining very 
precise 2-D EM modeling with parameterized macromodeling, 
leading to accurate, closed-form expressions of the p.u.1. pa­

rameters. This is necessary, as for on-chip lines, no simple 
numerical schemes or heuristic formulas are available to com­
pute the P.u.1. parameters. Next, relying on these parameterized 
macromodels, an SGM is implemented by applying a PC ex­
pansion of the Telegrapher's equations and then weighting these 
expanded equations by means of a Galerkin procedure. Finally, 
the voltage and current along the interconnect are known, being 
a function of the stochastic parameter under consideration. The 
novel formalism has been applied to a single IEM line with a 
random trapezoidal cross-section, in order to analyze its signal 
integrity behavior. Compared to an MC analysis, the new tech­
nique shows excellent accuracy and a considerably improved 
eff ciency. 
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