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Abstract. Many complex real-world systems can be accurately modeled by simulations. How-
ever, high-fidelity simulations may take hours or even days to compute. Because this can be imprac-
tical, a surrogate model is often used to approximate the dynamic behavior of the original simulator.
This model can then be used as a cheap, drop-in replacement for the simulator. Because simulations
can be very expensive, the data points, which are required to build the model, must be chosen as
optimally as possible. Sequential design strategies offer a huge advantage over one-shot experimental
designs because they can use information gathered from previous data points in order to determine
the location of new data points. Each sequential design strategy must perform a trade-off between
exploration and exploitation, where the former involves selecting data points in unexplored regions
of the design space, while the latter suggests adding data points in regions which were previously
identified to be interesting (for example, highly nonlinear regions). In this paper, a novel hybrid
sequential design strategy is proposed which uses a Monte Carlo–based approximation of a Voronoi
tessellation for exploration and local linear approximations of the simulator for exploitation. The
advantage of this method over other sequential design methods is that it is independent of the model
type, and can therefore be used in heterogeneous modeling environments, where multiple model types
are used at the same time. The new method is demonstrated on a number of test problems, showing
that it is a robust, competitive, and efficient sequential design strategy.
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1. Introduction. In many modern engineering problems, accurate high-fidelity
simulations are used instead of controlled real-life experiments in order to reduce the
overall time, cost, and/or risk. These simulations are used by the engineer to under-
stand and interpret the behavior of the system under study and to identify interesting
regions in the design space. They are also used to understand the relationships be-
tween the different input parameters and how they affect the outputs.

However, the simulation of one single instance of a complex system with multiple
inputs (also called factors or variables) and outputs (also called responses) can be a
very time-consuming process. For example, Ford Motor Company reported on a crash
simulation for a full passenger car that took 36 to 160 hours to compute [16]. Because
of these long computational times, the use of simulations may still be impractical for
engineers who want to explore, optimize, or gain insight into the system.

In this study, the simulator is assumed to be deterministic, meaning that the
same output is produced if the simulator is run twice with the same input values.
Furthermore, the system under study is a grey or black box, with little or no additional
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HYBRID SEQUENTIAL DESIGN 1949

information available about its inner working. This means that, without running
simulations, little or nothing is known about the exact behavior of the system, and
no assumptions can be made about continuity or linearity or any other mathematical
properties the system might have.

The goal of global surrogate modeling is to find an approximation function that
mimics the behavior of the original system but can be evaluated much faster. This
function is constructed by performing multiple simulations (called samples) at key
points in the design space, analyzing the results, and selecting a surrogate model that
approximates the data and the overall system behavior quite well. This is illustrated
in Figure 1.1.

Fig. 1.1. A set of data points is evaluated by the simulator, which outputs a response for every
data point. An approximation model (global surrogate model) is fit to the data points.

Note that global surrogate modeling differs from local surrogate modeling in the
way the surrogate models are employed. In local surrogate modeling, local models
are used to guide the optimization algorithm towards a global optimum. The local
models are discarded afterwards. In global surrogate modeling, the goal is to create a
model that approximates the behavior of the simulator on the entire domain, so that
the surrogate model can then be used as a replacement for the original simulator and
can be used to explore the design space. Thus, the goal of global surrogate modeling
is to overcome the long computational time of the simulator by providing a fast but
accurate approximation, based on a one-time upfront modeling effort. In this paper,
we are concerned only with global surrogate modeling.

Mathematically, the simulator can be defined as an unknown function f : Rd → C,
mapping a vector of real inputs to a real or complex output. This function can be
highly nonlinear and possibly even discontinuous. This unknown function has been
sampled at a set of scattered data points P = {p1,p2, . . . ,pn}, for which the function
values {f(p1), f(p2), . . . , f(pn)} are known. In order to approximate the function
f , a function f̃ : Rd → C is chosen from the (possibly) infinite set of candidate
approximation functions F .

The quality of this approximation depends on both the choice and exploration of
the function space F and the data points P . Ideally, the function f itself would be
in the search space F , in which case it is possible to achieve an exact approximation.
However, this is rarely the case, due to the complexity of the underlying system. In
practice, the function f̃ is chosen according to a search strategy through the space F ,
in order to find the function that most closely resembles the original function, based
on some error metric for the data points P [2, 23].
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It is clear that the choice of the data points P (called the experimental design) is
of paramount importance to the success of the surrogate modeling task. Intuitively,
the data points must be spread over the domain Rd in such a way as to convey a
maximum amount of information about the behavior of f . This is a nontrivial task,
since little or nothing is known about this function in advance.

In this paper, we propose a new iterative scheme for selecting these data points
that distributes the points in such a way that the data density is proportional to
the local nonlinearity of the function, under the assumption that highly dynamic
regions are more difficult to approximate than linear regions. To achieve this goal,
the gradient of the function in the data points is estimated. This approach is then
augmented with a space-filling technique based on Voronoi tessellations.

2. Sequential design. In traditional design of experiments (DOE), the experi-
mental design P is chosen based only on information that is available before the first
simulation, such as the existence of noise, the relevance of the input variables, the
measurement precision, and so on. This experimental design is then fed to the simu-
lator, which evaluates all the selected data points. Finally, a surrogate model is built
using this data. This is essentially a one-shot approach, as all the data points are
chosen at once and the modeling algorithm proceeds from there, without evaluating
any additional samples later on.

In the deterministic setting of computer experiments, well-known DOE techniques
such as replication, randomization, and blocking lose their relevance [34]. This leaves
space-filling designs, which try to cover the domain as equally as possible, as the only
interesting option. The advantages of classical methods are that they can be easily
implemented and provide a good (and guaranteed) coverage of the domain. Examples
of popular space-filling design are fractional designs [39], Latin hypercubes [38], and
orthogonal arrays [8].

Sequential design (which is also known as adaptive sampling [29] or active learning
[40]) further improves on this approach by transforming the one-shot algorithm into
an iterative process. Sequential design methods analyze data (samples) and models
from previous iterations in order to select new samples in areas that are more difficult
to approximate, resulting in a more efficient distribution of samples compared to
traditional design of experiments.

2.1. Sequential design methods. A typical sequential design method is de-
scribed in Algorithm 1. First, an initial batch of data points is evaluated using a
minimal experimental design. This design is usually one of the traditional designs
from DOE, such as a Latin hypercube. The initial design must be large enough to
guarantee a minimal coverage of the domain, but should be small enough so that there
is room for improvement, allowing the sequential design strategy to do its work.

Based on the initial experimental design, a surrogate model is built and the
accuracy of this model is estimated using one or more well-known error metrics.
Examples of error metrics are cross-validation, an external test set, error in the data
points, and so on. Based on the estimated accuracy of the model, the algorithm may
(and probably will, if the initial design was small enough) decide that more samples
are needed.

The locations of these additional samples are chosen by the adaptive sampling or
sequential design strategy. Many different strategies are available, and the optimal
strategy may depend on many factors, including the surrogate model type that is used,
the number of data points, the system that is being modeled, and so on. An overview
of available sequential design techniques is given later. Finally, a new surrogate model
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Algorithm 1. A typical sequential design method.

P ← initial experimental design
Calculate f(P ) through simulation
Train model using P and f(P )
while accuracy not reached do
Select new data points Pnew using sequential design strategy
Calculate f(Pnew) through simulation
P ← P ∪ Pnew

Train model using P and f(P )
end while

is built using all the data gathered thus far, and the model accuracy is estimated
again. If the desired accuracy is still not reached, the entire sample selection process
is started all over again.

Ultimately, the goal of this scheme is to reduce the overall number of samples,
since evaluating the samples (running the simulation) is the dominant cost in the
entire surrogate modeling process. If data points are chosen sequentially, more infor-
mation is available to base the sampling decision on compared to traditional DOE.
Both the previous data points and the behavior of the intermediate surrogate model
provide important information on where the next sample(s) should be located. If
this additional information is used well, the total number of samples can be reduced
substantially.

Note that some optimization algorithms use similar iterative schemes, but with a
completely different goal. These optimization algorithms may also employ sequential
design techniques to minimize the number of samples required to find the global
optimum. However, they are not concerned with finding a good global approximation
over the entire design space. Because of this, a lot of optimization-oriented sequential
design techniques focus more on exploitation and less on exploration, and might even
ignore exploration completely. In this paper, we will consider only related work on
sequential design in the context of global surrogate modeling. For more information
about sequential design in the context of optimization, please refer to [26, 10].

2.2. Exploration and exploitation. An essential consideration in sequential
design is the trade-off between exploration and exploitation. Exploration is the act
of exploring the domain in order to find key regions of the design space, such as
discontinuities, steep slopes, and optima or stable regions, that have not yet been
identified before. The goal is similar to that of a one-shot experimental design, in
that exploration means filling up the domain as evenly as possible. Exploration does
not involve the responses of the system, because the goal is to fill up the input domain
evenly. Examples of exploration methods can be found in [33, 13].

The advantage of exploration-based sequential design methods over one-shot ex-
perimental designs is that the amount of samples evaluated depends on the feedback
from previous iterations of the algorithm (when the model is accurate enough, no
more samples are requested). When one large experimental design is used, too many
samples may have been evaluated to achieve the desired accuracy (oversampling) or
too little samples may have been evaluated (undersampling), in which case one must
completely restart the experiment or resolve to sequential methods to improve the
initial experimental design.

Instead of exploring the input domain, exploitation-based methods select samples
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in regions which have already been identified as (potentially) interesting. For example,
one might want to zoom in on optima in order to make sure the surrogate model
does not overshoot the optimum. Or one might also want to sample near possible
discontinuities to verify that they are, in fact, discontinuous and not just very steep
slopes. Exploitation involves using the outputs of the previous function evaluations
to guide the sampling process. Examples of exploitation methods can be found in
[24, 9, 41, 30, 25, 32].

In every sequential design strategy, a trade-off must be made between these two
conflicting options. If a sequential design strategy focuses only on exploitation, the
initial experimental design must be sufficiently large so as to capture all regions of
interest right away. Otherwise, large (interesting) areas may be left unsampled, a
problem which they share with optimal designs [2]. Because the simulator is often a
black box, it is infeasible in practice to predict the required sample size accurately. On
the other hand, if a strategy focuses only on exploration, the advantage provided by
evaluating and selecting the samples sequentially is ignored, because the outputs are
not used. This means that any competitive sequential design strategy must somehow
accommodate both exploration and exploitation.

The necessary trade-off between exploration and exploitation can be accounted
for in different ways. In sequential design methods such as those proposed in [30, 9],
the trade-off is buried deep in the formulation of the algorithm. In other strategies,
such as the one proposed by [41], the difference between exploration and exploitation
is very clear, in that a simulated annealing approach is used to balance between the
two and to switch priorities from one to the other during the modeling process.

2.3. Optimal and generic sequential design. A large class of sequential
design methods assume that the model type is known in advance. This allows the
algorithm to exploit the behavior of this model to guide the sampling process in the
optimal direction for this specific model type. This is called optimal design. Examples
of sequential design strategies using some aspects of optimal design can be found in
[2, 20, 36, 28].

All of these methods incorporate to some degree information about the model in
the sampling process. These sampling strategies may be highly efficient if the model
for which it was developed is suitable for the problem at hand. However, this may
not always be the case, as the optimal model type for a specific problem might not
be known up front. This motivates the need for a generic algorithm, which makes
no presumptions about the model type, the behavior of the system, or the amount of
samples needed.

Generic sequential design strategies can use only the outputs from the simulator
and previously built models to decide where to sample next. They cannot make any
assumptions about how the model will behave or which type of model is used. In fact,
completely different model types may be used at the same time in a heterogeneous
modeling environment [19]. This is a major advantage over optimal sequential design
strategies, especially in a black-box setting where little or nothing is known about the
system in advance. In this case, choosing a model type for the problem comes down to
guesswork, and if a bad choice is made, the optimal design that will be generated will
not be optimal for another model type that might be tried later on. A heterogeneous
modeling environment can help solve this problem by automatically looking for model
types that match the problem at hand, while generating a sequential design that is
not specifically tailored to one model type. Heterogeneous modeling environments,
in which many completely different types of models are considered together, have a
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larger search space of candidate functions F , and can therefore drastically improve
the accuracy of the final model.

2.4. Hybrid sequential design. We propose a novel, generic, disjunct ap-
proach, in which two different criteria are defined: one for exploration and one for
exploitation. For the exploration criterion, we have chosen a Monte Carlo Voronoi
approximation because of its simplicity and computational efficiency. For the exploita-
tion criterion, we have developed an algorithm that selects additional samples near
locations that deviate significantly from a local linear approximation of the system
(based on the gradient of the function).

The goal of the new hybrid algorithm is to rank the neighborhood of all existing
data points. This ranking is based on the two aforementioned criteria. If a neighbor-
hood is ranked highly, it is either undersampled or very nonlinear. In either case, an
additional sample will be selected in this neighborhood.

In the following sections, we will discuss the two components of the new hybrid
sequential design algorithm in great detail. First, the Monte Carlo Voronoi approxi-
mation will be investigated. Next, the Local Linear Approximation (LOLA) algorithm
will be discussed and analyzed. Finally, the hybrid algorithm that combines these two
components will be presented and tested on a number of test cases.

3. Exploration using a Voronoi approximation. An exploration criterion
must accurately and efficiently identify the region of the design space that contains
the lowest density of samples. This can be done in many different ways, depending
on the density measure used and on the allowed computational complexity of the
algorithm.

A Voronoi tessellation (or Voronoi diagram) is an intuitive way to describe sam-
pling density. Assume a discrete and pairwise distinct set of points P ⊂ Rd in Eu-
clidian space, which represents the existing data points. For any point pi ∈ P , the
Voronoi cell Ci ⊂ Rd contains all points in Rd that lie closer to pi than any other
point in P . The complete set of cells {C1, C2, . . . , Cn} tesselate the whole space and
is called the Voronoi tessellation corresponding to the set P .

To define a Voronoi tessellation more formally, we adopt the notation from [1].
For two distinct points pi,pj ∈ Rd, the dominance of pi over pj is defined as the
subset of the plane being at least as close to pi as it is to pj . Formally,

dom(pi,pj) = {p ∈ R
d| ‖p− pi‖ ≤ ‖p− pj‖}.

dom(pi,pj) is a closed half plane bounded by the perpendicular bisector of pi and
pj . This bisector, which we will call the separator of pi and pj , separates all points
of the plane closer to pi from those closer to pj . Finally, the Voronoi cell Ci of pi is
the portion of the design space that lies in all dominances of pi over all of the other
data points in P :

Ci =
⋂

pj∈P\pi

dom(pi,pj).

This is illustrated in Figure 3.1. Note that in this example, the Voronoi cells are
noticeably smaller near the center than near the borders; a space-filling sequential
design algorithm should select new data points in the larger (darker) Voronoi cells
in order to achieve a more equal distribution of data. However, the points that lie
closest to the border are colored black, because their volume is infinitely high: their
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Fig. 3.1. A set of data points and their Voronoi cells in a two-dimensional (2D) design space.
Larger Voronoi cells have a darker color. The data points are drawn as white dots. Unbounded
Voronoi cells are black.

Voronoi cells reach to infinity in their respective directions. This is a basic property
of Voronoi tessellations.

Computing a Voronoi tessellation is nontrivial and is usually done by calculating
the dual Delaunay triangulation, from which the Voronoi tessellation can be computed
in O(n) time [1]. However, this still does not give us the volume of each Voronoi
cell, which requires another computationally intensive step. In order to calculate
the volume of each Voronoi cell, the unbounded Voronoi cells near the border of the
domain must first be bounded. After this, the volume of each cell can be computed
and used as a measure of density.

Fortunately, we do not need the complete computation of the Voronoi cells for
our purposes: an estimation of the volume of the cells is enough. Thus, instead of
solving the problem exactly by calculating the Voronoi tessellation and the volume, a
Monte Carlo approach is used. In order to estimate the volume of each Voronoi cell,
a large number of random, uniformly distributed test sample points are generated
in the domain. For each test sample point, the minimum distance from all the data
points is computed, and the test sample point is assigned to the data point which is the
closest. If enough test sample points are generated like this, the algorithm produces an
estimation of the (relative) size of each Voronoi cell. This is described more formally
in Algorithm 2. For more information on this algorithm and its performance figures,
as well as a comparison with other exploration methods, please refer to [6].

4. Exploitation using local linear approximations. The goal of the ex-
ploitation part of a hybrid sequential design algorithm is to use the responses from
previous samples to guide the sampling process to interesting regions in the design
space. Which regions are deemed interesting depends mainly on the purpose of the
model. In optimization, interesting regions are regions which may or do contain (lo-
cal) optima. In global surrogate modeling, the goal is to find a model that accurately
approximates the system over the entire domain.

However, some regions of the domain may be more difficult to approximate than
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Algorithm 2. Estimating the Voronoi cell size. P is the set of data points that have
to be ranked according to their respective Voronoi cell size.

S ← |P | × 100 random points in the domain
V ← [0, 0, . . . , 0]
for all s ∈ S do
d←∞
for all p ∈ P do
if ‖p− s‖ < d then
pclosest ← p
d← ‖p− s‖

end if
end for
V [pclosest]← V [pclosest] + (1/ |S|)

end for

others. This may be due to discontinuities, many (local) optima close together, and
so on. It is therefore intuitively a good idea to sample more densely at these “diffi-
cult” regions. More generally, samples should be distributed according to the local
nonlinearity of the function. This is illustrated in Figure 4.1.

In order to be able to sample according to the local nonlinearity of the function,
one needs a measure of this nonlinearity. To this end, we use the gradient of the
system response. The gradient of a function f : Rd → R is defined as

(4.1) ∇f =

(
∂f

∂x1
,
∂f

∂x2
, . . . ,

∂f

∂xd

)
.

The gradient of a function at a given point p0 ∈ Rd in the design space has the
property that it represents the best local linear approximation for f around p0:

(4.2) f(p) = f(p0) +∇fp0 (̇p− p0).

Therefore, the gradient can be used to estimate and quantify the nonlinearity in
the region around p0 [21]. However, the gradient of the black-box function f is rarely

Fig. 4.1. This plot shows a one-dimensional (1D) function and a set of samples for this func-
tion. The function is very simple and easy to approximate on the left-hand side, but very nonlinear
on the right-hand side. Intuitively, more samples should be selected on the right to compensate for
this nonlinearity. The samples in this plot were selected using the hybrid algorithm proposed in this
paper. As expected, more samples are selected at the right-hand side to better capture the highly
nonlinear behavior.
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Algorithm 3. A high level overview of the LOLA algorithm. P are all the samples
that have been processed by LOLA before. Pnew are the data points that have been
selected by the sequential design algorithm in the previous iteration but have not
been processed yet by the sampling algorithm. nnew is the number of new samples
requested from the algorithm.

for all pnew ∈ Pnew do
for all p ∈ P do
Try to add pnew to neighborhood N(p) of p
Try to add p to neighborhood N(pnew) of pnew

Update gradient estimations for p and pnew

end for
P ← P ∪ pnew

end for
for all p ∈ P do
Calculate error on gradient estimation in N(p)

end for
Pick nnew highest ranked neighborhoods
Select new samples in these neighborhoods

known, so it cannot be used directly. The idea behind the Local Linear Approximation
(LOLA) sampling algorithm is to estimate the gradient at the data points, in order
to measure the nonlinearity around these data points. Each region or neighborhood
is ranked according to its estimated nonlinearity, and new samples are selected in
neighborhoods which are highly ranked. From now on, the term neighborhood will be
used only to identify a set of samples which are chosen to represent the region around
a particular data point.

A high level pseudocode overview of the algorithm can be found in Algorithm 3.
When new samples have been evaluated by the simulator (for example, from a previous
iteration of the sequential design method or from an initial experimental design), these
samples have to be preprocessed by the LOLA algorithm. The algorithm considers
a new sample pnew as a candidate neighbor sample for each previously processed
sample p. The neighborhood N(p) of a sample will be used to estimate the gradient
at p later on. At the same time, p is also considered for the neighborhood N(pnew)
of pnew. After this initial preprocessing step, the gradient at each data point is
estimated using the newly updated neighborhoods. Finally, the local nonlinearity of
the neighborhoods is estimated by comparing the samples in the neighborhood to the
gradient estimation. This results in a ranking of each neighborhood from linear to
highly nonlinear. Finally, this ranking is used to select new samples in the highest
ranking regions.

Each component of the LOLA algorithm will be discussed in greater detail in
the following sections. First, the mathematical background behind the neighborhood
selection algorithm will be explained. Next, it is shown how the neighborhoods can
be used to estimate the gradient at the data point, and how the gradient estimation
is subsequently used to estimate the local nonlinearity of the function.

4.1. Estimating the gradient. A lot of research has been done on gradient-
estimating methods [11]. These methods try to estimate the gradient at one point
in the design space by evaluating samples near this point. This is often done in
the context of optimization, following the assumption that the gradient is a good
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indication of the direction of the optimum. Well-known optimization techniques such
as hill climbing use this knowledge to guide the optimizer to the optimum.

These gradient estimation methods are further divided into indirect and direct
estimation methods [42]. The main difference is that indirect methods assume a
black-box simulator, while direct methods use internal knowledge of the simulator or
its behavior. Examples of indirect gradient estimation techniques are finite differences,
simultaneous perturbation, response surface methods, and frequency domain methods
[12]. An overview of indirect methods can be found in [11]. Examples of direct
techniques are infinitesimal perturbation analysis and likelihood ratios.

All of these methods are, however, useless for the purpose of this algorithm, as
they assume that additional new samples can be evaluated in order to achieve a proper
estimate for the gradient. In the context of surrogate modeling of an expensive black-
box simulator, it is usually not acceptable to evaluate additional data points just to
obtain the gradient. The objective is fundamentally different: in sequential design,
estimating the gradient is only a small subgoal of a much larger problem, and samples
are chosen so as to maximize the accuracy of the surrogate model, not the accuracy
of the gradient. This renders most traditional gradient estimation methods useless
for the LOLA algorithm.

The LOLA algorithm requires a method that estimates the gradient as accurately
as possible using only the data that are available. No assumptions can be made about
the distribution of the data over the domain, because the algorithm has no complete
control over the choice of all the data points: LOLA can be used in conjunction with
other (space-filling) sampling strategies, and the initial experimental design can take
any form. Thus, gradient estimation methods that assume that data are available on
a grid or any other pattern are unusable.

In the technique we propose, estimating the gradient in a sample location pi

comes down to choosing a set of neighboring samples N(pi) = {pi1,pi2, . . . ,pim}
that lie close to the sample pi and provide as much information as possible about
the region around pi. This is illustrated in Figure 4.2 for the one-dimensional case.
The sample, for which we want to find a neighborhood, is drawn as a circle. Three
candidate neighbors are drawn as squares. The problem of choosing two neighbors
out of these three candidates will now be considered. In Figure 4.2(a), two neighbors
are chosen on opposite sides (drawn as larger squares), while in Figure 4.2(b), two
neighbors are chosen on the left side.

If distance from the sample is chosen as the metric to determine the best can-
didates for the neighborhood, the neighborhood displayed in Figure 4.2(b) will be
chosen over the one displayed in Figure 4.2(a), since both candidates on the left lie
closer to the middle than the one on the right. However, it is obvious that the other
neighborhood conveys much more information about the behavior of the function in
this region. The information gain from adding a second neighbor close to another is
much smaller than the information gain from adding one on the other side. Thus the
need arises for a metric that scores neighborhoods according to how informative they
are.

4.2. Constructing the neighborhoods. When new samples are available (ei-
ther from a previous iteration of the algorithm or from the initial experimental design),
they have to be processed, and neighborhoods have to be assigned to each sample.
This will be done in a sequential manner. Each sample will be considered as a can-
didate neighbor for each previously processed sample, and at the same time each
previously processed sample will be considered as a candidate neighbor for the new



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1958 CROMBECQ, GORISSEN, DESCHRIJVER, AND DHAENE

(a) Good neighborhood (b) Bad neighborhood

Fig. 4.2. Two different neighborhoods of size 2 (2 samples) are shown in a 1D design space.
The sample for which the neighborhood has been chosen is drawn as a circle in the middle. Three
candidate neighbors are drawn. The two candidates which have been selected as neighbors are drawn
as large squares; the third candidate, which is not in the neighborhood set, is drawn as a smaller
square.

sample. Thus, for each new sample, one needs to revisit all previous samples and their
neighborhoods. We will now first consider the simplified case of finding the optimal
neighborhood for one particular sample, given a set of other samples.

4.2.1. The ideal neighborhood. For clarity, we will now refer to the sample for
which we want to find a neighborhood as the reference sample pr ∈ P and refer to all
the other available samples Pr = P\pr as candidate neighbors. Without loss of gener-
ality, we assume that pr lies in the origin. This will allow us to omit the translation in
the following formulas. The goal is to find a subset N(pr) = {pr1,pr2, . . . ,prm} ⊂ Pr

that best represents the region around pr.
The ideal neighborhood is a good representation of the region around pr, covering

each direction equally, and thus providing the highest amount of information possible
on the behavior of the function around pr. The samples of such a neighborhood must
lie relatively close to the reference sample to be meaningful. They must also lie far
away from each other in order to cover each direction as equally as possible. This
results in two fundamental properties for the ideal neighborhood:

1. Cohesion: neighbors lie as close to the reference sample as possible.
2. Adhesion: neighbors lie as far away from each other as possible.

These two properties necessarily conflict with each other. The optimally cohesive
neighborhood consists of all samples that lie as close to the reference sample as pos-
sible, while the optimally adhesive neighborhood consists of all samples spread out
over the far reaches of the design space. Therefore, a compromise will have to be
made, giving preference over adhesive neighborhoods that still lie relatively close to
the reference sample.

First, the concepts of cohesion and adhesion will be defined mathematically. There
are multiple sensible formulas, but the following definitions are chosen for reasons later
explained. Cohesion is defined as the average distance of all neighbors from the origin
(i.e., from pr):

(4.3) C(N(pr)) =
1

m

m∑
i=1

‖pri‖ .

Furthermore, adhesion is defined as the average minimum distance of neighbors from
each other:

(4.4) A(N(pr)) =
1

m

m∑
i=1

min {‖pri − prj‖ |j �= i} .
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(a) Good neighborhood (b) Bad neighborhood

Fig. 4.3. Examples of good and bad neighborhoods chosen from the same set of candidate
neighbors in a 2D design space. Samples that were selected for a neighborhood are drawn as large
squares; rejected neighbors are drawn as small squares.

Initially, consider the simplified case where all candidate neighbors have the same
contribution to the cohesion value, which means they all lie on the same distance
from the origin. This is illustrated for the two-dimensional case in Figure 4.3, where
all candidate neighbors lie randomly distributed on a circle. The point in the middle
is the reference sample. The goal is to find a set of m samples in the circle that
maximizes the adhesion equation (4.4).

If all points on the circle are available as candidate neighbors, the best set of
m neighbors are those that form an m-sided regular polygon. Of course, because
of the nonuniform distribution of the samples, an ideal neighborhood can rarely be
formed; however, among neighborhoods with equal cohesion values, some are clearly
superior to others. There is a strict hierarchy among candidate neighborhoods, defined
by their adhesion, as long as cohesion is identical for all candidate neighbors. The
neighborhood with the highest adhesion value for the given candidate neighbors is
illustrated in Figure 4.3(a) for m = 5. An example of a bad neighborhood can be
found in Figure 4.3(b). This neighborhood provides no information at all on the
behavior of the function on the left side of the reference sample.

In the 2D case, the ideal configuration for m neighbors when all candidates have
the same cohesion contribution is, as previously mentioned, the m-sided regular poly-
gon. In higher dimensions, this extends to the problem of placing m points in an
ideal configuration on a (hyper)sphere so that the adhesion value as defined by (4.4)
is maximized, which is a well-known open problem in mathematics for which their is
no known general solution in all dimensions. In fact, this is considered one of the great
mathematical challenges of the 21st century [5]. This is a major problem because the
LOLA sampling algorithm should function independently of the dimensionality of the
design space.

Because there is no all-around optimal solution for the problem of placing m
points on a d-dimensional hypersphere [35], we have focused on a subproblem for
which there is a solution known for all dimensions: the special case where m = 2d, or
the size of the neighborhoodm is twice the dimensionality d of the design space. It can
be intuitively seen that the optimal configuration in one dimension has one neighbor
on each side of the reference point, while the optimal configuration in two dimensions
is a square. This generalizes to the d-cross-polytope [3] in the d-dimensional case.
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The d-dimensional cross-polytope contains all of the points obtained by permuting
the coordinates (±1, 0, 0, . . . , 0). It has been proven that the cross-polytope config-
uration maximizes (4.4) in all dimensions [3]. This means that the ideal neighbor-
hood resembles the cross-polytope as closely as possible. When the set of candidate
neighbors consists of points that lie equally far from the origin, the best choice of
neighborhood will always be a cross-polytope shape.

4.2.2. The cross-polytope ratio. In reality, the problem is more complex.
Candidate points do not lie on a hypersphere; they differ in distance from the reference
point. This results in a multiobjective optimization problem, in which the goal is to
minimize the cohesion function defined in (4.3) while at the same time maximizing
the adhesion function from (4.4). Many different methods have been proposed to
solve such multiobjective optimization problems efficiently. The simplest approach is
to combine the different objectives into a single aggregate objective function. This
solution is acceptable only if the scale of both objectives is known, so that they can
be combined into a formula that gives each objective equal weight. Fortunately, in
the case of the cohesion and adhesion objectives, these weights are known.

For points lying on a sphere with a given radius, the cross-polytope is the optimal
configuration, maximizing the adhesion value. This means that any given neighbor-
hood with cohesion value C(N(pr)) must always have a lower adhesion value than
the cross-polytope with radius C(N(pr)). A cross-polytope with radius C(N(pr))
has an adhesion value of

√
2C(N(pr)), because, in a cross-polytope configuration,

the distance between points (the adhesion) is
√
2 times larger than the distance from

the origin (the cohesion) for any dimension higher than 1. Hence,
√
2C(N(pr)) is

the absolute upper bound for the adhesion value of any neighborhood with cohesion
C(N(pr)). Based on this property, we can now describe how much a given neighbor-
hood resembles a cross-polytope by the following measure:

(4.5) R(N(pr)) =
A(N(pr))√
2C(N(pr))

, d > 1.

If R(N(pr)) = 1 for a neighborhood, the neighborhood must form a perfect
cross-polytope configuration. If the score is 0, all points of the neighborhood lie in
the exact same spot, reducing the adhesion value to zero. This measure is called
the cross-polytope ratio and indicates how much a neighborhood resembles a cross-
polytope.

The 1D case forms a unique exception to this rule, as the distance of the two points
from each other is twice the distance from the origin, instead of

√
2. Additionally,

in the 1D case, there exists an infinite number of configurations which maximize the
adhesion value for any given cohesion value c: any two points x,−2c+x with 0 ≤ x ≤ c
will result in a maximized adhesion value, since |(−2c+ x)− x| = 2c. So, we propose
an alternative measure, which in the 1D case exhibits behavior similar to (4.5) in the
d-dimensional case (d > 1):

(4.6) R(N(pr)) = 1− |pr1+pr2|
|pr1|+|pr2|+|pr1−pr2| , d = 1.

To illustrate the behavior of the cross-polytope ratio, we now consider the case of
finding the optimal neighborhood for a sample pr = 0 in a 1D design space. Assume
that one sample pr1 = 1 is already added to the neighborhood of pr. The cross-
polytope ratio is illustrated in Figure 4.4(a). This plot shows the cross-polytope ratio
when the second neighbor is moved over the domain while the first neighbor is kept
fixed at 1. As expected, the function is maximized at location −1, because this will
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(a) Cross-polytope ratio

(b) Neighborhood score

Fig. 4.4. Cross-polytope ratio and neighborhood score for reference sample 0, with one neighbor
fixed at 1 in a 1D design space. Three other candidate neighbors are drawn as small squares. The
candidates with, respectively, the highest cross-polytope ratio and neighborhood score are drawn as
large squares.

result in a perfect cross-polytope neighborhood. For any positive value x, the score at
−x is always better than the one at x, which illustrates that samples that lie on the
opposite side of the fixed neighbor are preferred, because they add more information.

The cross-polytope ratio has some useful and desirable properties: sampling on
the “unsampled” side is highly encouraged, and samples near a cross-polytope con-
figuration are preferred over samples far away. However, this metric has a serious
drawback, as it completely ignores distance from the reference point when scoring
neighborhoods.

This is also illustrated in Figure 4.4(a), where four candidate neighbors are visu-
alized as squares. The two big squares are the ones that are selected as neighbors,
because they form a perfect cross-polytope. However, it is clear that the two points
that lie closer to the origin form the best neighborhood and convey much more in-
formation about the environment of the reference sample pr = 0 than the two that
were selected. Because of this, the cross-polytope ratio cannot be used directly as
a measure for selecting a suitable neighborhood. In order to resolve this issue, the
distance of the candidate neighbors from the origin must be taken into account.

4.2.3. The neighborhood score. We define the neighborhood score as follows:

(4.7) S(N(pr)) =
R(N(pr))

C(N(pr))
.

By dividing the cross-polytope ratio by the cohesion value C(N(pr)) of the neigh-
borhood, a measure is acquired that prefers neighborhoods that resemble a cross-
polytope as well as neighborhoods that lie closer to the reference sample pr.

The neighborhood score is shown in Figure 4.4(b) for the 1D case. By using
the neighborhood score (instead of the cross-polytope ratio), samples lying closer to
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(a) Cross-polytope ratio. (b) Cross-polytope ratio surface
plot.

(c) Neighborhood score. (d) Neighborhood score surface plot.

Fig. 4.5. The cross-polytope ratio and the neighborhood score in a 2D design space with three
neighbors fixed at (−1, 0), (1, 0), (0,−1). The fourth neighbor is moved over the domain, and the
resulting cross-polytope ratio and neighborhood score are displayed in (a) and (c), respectively. The
global maximum is indicated by a diamond on the surface plots, while the fixed neighbors are drawn
as squares.

the origin are given preference over samples that lie farther away. However, the key
properties of the cross-polytope ratio are maintained: samples on the unsampled side
are still preferred over samples near other neighbors. In Figure 4.4(b), the sample
closer to 0 is now chosen as the second neighbor instead of the sample at −1 as in
Figure 4.4(a).

In Figure 4.5, the cross-polytope ratio and the neighborhood score are shown for
the 2D case. In the case of the cross-polytope ratio (Figure 4.5(a)), the surface is max-
imized at (0, 1). In the case of the neighborhood score function (Figure 4.5(c)), the
surface is maximized at (0, 0). In both cases, the surface reaches a local minimum at
the three fixed neighbors, which makes sense, since adding another point at the same
location will not provide any additional information. Furthermore, both functions
strongly prefer new samples around (0, 1). It is clear that in the 2D case the neigh-
borhood score shows behavior similar to the 1D case shown in Figure 4.4. Because
the fundamental properties of the cross-polytope do not depend on its dimensionality,
the neighborhood score behaves the same in higher dimensions.
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4.3. Gradient estimation. Based on the neighborhood score (as defined in
section 4.2.3), we can select a good set of neighbors for each reference sample pr

so that the neighborhood provides a proper coverage of the design space in each
direction. These neighbors may not be the samples closest to pr, but they provide
more information about the behavior of the system around the reference sample than
other neighborhoods with potentially lower cohesion values.

Once a set of suitable candidate neighbors has been chosen, estimating the gra-
dient becomes straightforward. We define the neighborhood for reference sample pr

as N(pr) = {pr1,pr2, . . . ,prm}, with m = 2d, as explained earlier. The gradient at
pr is estimated by fitting a hyperplane through pr and its neighbors. To ensure that
the hyperplane goes exactly through pr, the following system is solved using least
squares:

(4.8)

⎛
⎜⎜⎜⎜⎝

p
(1)
r1 − p

(1)
r p

(2)
r1 − p

(2)
r . . . p

(d)
r1 − p

(d)
r

p
(1)
r2 − p

(1)
r p

(2)
r2 − p

(2)
r . . . p

(d)
r2 − p

(d)
r

...
...

...

p
(1)
rm − p

(1)
r p

(2)
rm − p

(2)
r . . . p

(d)
rm − p

(d)
r

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

g
(1)
r

g
(2)
r

...

g
(d)
r

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f(pr1)
f(pr2)

...
f(prm)

⎞
⎟⎟⎟⎠ ,

where pri = (p
(1)
ri , p

(2)
ri , . . . , p

(d)
ri ) is the ith neighbor for pr with evaluated value f(pri),

and g = (g
(1)
r , g

(2)
r , . . . , g

(d)
r ) is the gradient that is being calculated. This system can

be inverted and will result in the hyperplane which minimizes the distance from the
neighbors in a least squares sense. This results in the best linear approximation for the
neighbors, which will converge to the best local linear approximation at the reference
sample as the neighbors lie closer to the reference sample.

Because of the way the neighbors pri are chosen, the matrix from (4.8) is always
well-conditioned. This can be seen from the fact that, in a perfect cross-polytope
configuration, all the vectors pri − pr are orthogonal with respect to each other,
and therefore the matrix composed of these vectors is well-conditioned. Because the
neighborhood selection algorithm produces a neighborhood that resembles a cross-
polytope as closely as possible, the resulting matrix is also well-conditioned.

It is very important to have a good neighborhood in order to get a good estimation
of the gradient. If all neighbors lie in the same direction, it becomes impossible to
make a good estimation of the gradient, since the hyperplane will be completely biased
towards the behavior of the system near the neighbors. This is why a lot of attention
is paid to proper neighborhood selection in the LOLA algorithm.

4.4. Nonlinearity measure. Once the gradient estimation is available, it is
possible to estimate the (non)linearity of the system behavior around the reference
sample. The local nonlinearity of the system can be estimated from the normal of the
hyperplane using the following formula:

(4.9) E(pr) =

m∑
i=1

|f(pri)− (f(pr) + g · (pri − pr))| .

This formula computes how much the response at the neighbors differs from the local
linear approximation that was computed earlier. The nonlinearity measure E(pr)
can now be used to get an idea of how nonlinearly the function behaves in the area
around the reference sample pr, using solely previously evaluated samples to compute
this estimation. Furthermore, this approach works both for real outputs and for
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complex outputs, making the LOLA algorithm suitable in both cases without requiring
a change in the algorithm. Also note that this is the only place in the algorithm where
the actual simulator output is used; the rest of the algorithm works on input values
only and, if desired, some ratios and scores can be precalculated, independent of the
actual system behavior.

5. Hybrid sequential design using Voronoi approximation and LOLA.
In the previous two sections, we have basically developed two different methods
for ranking previously evaluated samples. The Monte Carlo Voronoi approximation
method explained in section 3 ranks samples according to the size of their Voronoi
cells, while the LOLA algorithm discussed in section 4 ranks samples according to
local nonlinearity. The first method is an exploration strategy, while the second is an
exploitation strategy. By combining these two metrics, we can counteract the disad-
vantages of both approaches and deliver a solid, robust, and flexible sampling strategy.
From now on, this hybrid sampling strategy will be referred to as LOLA–Voronoi.

In order to properly combine the two measures, they first have to be normalized.
The Voronoi cell size is already in the range [0, 1], because it represents which portion
of the design space is contained within each Voronoi cell. The nonlinearity measure,
however, is initially not scaled to [0, 1]. Therefore, the hybrid score for a sample
pi ∈ P is computed using the following formula:

(5.1) H(pi) = V (pi) +
E(pi)∑n
j=1 E(pj)

.

The LOLA–Voronoi sequential design strategy is described in pseudocode in Algo-
rithm 4. First, the nonlinearity measureE(p) is calculated using the LOLA algorithm.
Then, the Voronoi cell size V (p) is computed using the Voronoi approximation, as de-
fined in Algorithm 2. These two measures are then combined into a single value, and
this value is used to rank all the samples according to how undersampled their environ-
ment is. Finally, nnew new samples are selected around the samples which are ranked
the highest. This is done by generating a number of random points in the Voronoi cell
of pi and picking the one farthest away from pi and its neighbors. This process can
be sped up by reusing the points that were generated for the Voronoi approximation.
Combining an exploration strategy with an exploitation strategy guarantees that the
design space is filled up everywhere and that no large areas are left unsampled. How-
ever, nonlinear regions will be sampled much more densely, which will in turn allow
the surrogate model to capture complex behavior more easily.

Algorithm 4. Hybrid sequential design using Voronoi approximations and LOLA.
nnew is the number of samples requested by the user of the algorithm.

for all p ∈ P do
Calculate E(p)
Calculate V (p)
Compute final ranking H(p) using E(p) and V (p)

end for
Sort P by H
for i = 1 to nnew do
pnew ← location near pi farthest from other samples
Pnew ← Pnew ∪ pnew

end for
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Note that the choice of nnew affects the quality of the design that is being gen-
erated: if nnew is smaller, more information is available to determine the location of
the next sample as optimally as possible. Preferably, nnew should be set to 1, but
higher values will also produce good designs, because at most one sample is chosen in
each Voronoi cell during each iteration of the sequential algorithm, thereby ensuring
a proper coverage of the design space, even for nnew > 1.

The efficiency of the LOLA–Voronoi sequential design strategy comes at the cost
of additional computing time for sample selection, which is mainly caused by the
neighborhood selection algorithm, which considers each sample as a candidate neigh-
bor for every other sample. Every time a new sample is evaluated, it has to be
considered as a potential candidate for every other sample. This is done by replacing
each current neighbor by the new candidate and calculating the neighborhood score.
Finally, the neighborhood is picked that has the best score. The standard algorithm
runs in O(n2) time, where n is the number of samples evaluated so far. Whether
this is an issue or not depends largely on the problem at hand. If evaluating samples
is very expensive (costing minutes, hours, or days), the additional computing time
for the sequential sampling process may be negligible compared to the sample eval-
uation time. However, if acquiring new data is relatively cheap and the number of
data points is large, the neighborhood selection algorithm can severely slow down the
overall modeling process.

Fortunately, many heuristics can be applied to the neighborhood selection algo-
rithm to significantly speed up the entire process. For example, samples that lie much
farther away from the reference sample than the currently selected neighbors can be
rejected right away, without considering them as candidate neighbors, and thus sav-
ing the expensive neighborhood score calculation step. This simple modification can
reduce the number of neighborhood score calculations by 90%, without hurting the
quality of the design that is generated by the algorithm. Speeding up LOLA–Voronoi
by means of heuristics is a subject of ongoing research and will be explored and dis-
cussed in future work. The current implementation of LOLA–Voronoi, which was
used in the experiments for this paper, already works extremely quickly up to several
thousands of samples, which should be generally enough for typical problems.

6. Experimental setup. In previous studies, LOLA–Voronoi has repeatedly
proven its excellent performance on problems from different research domains, such
as electrical engineering [19, 17, 14, 7], aerospace engineering [14], and hydrology
[4]. In this section, three examples are discussed, each demonstrating the flexibility
and robustness of LOLA–Voronoi under different conditions. LOLA–Voronoi will
be compared against a number of methods that have proven their merit in other
studies. First, a space-filling sequential design method will be included, which is in
fact the Voronoi component of LOLA–Voronoi as described in section 3, and which
has demonstrated its efficiency compared to other space-filling design strategies in [6].

Additionally, an exploitation-based method will be included that calculates the
difference between the models constructed in previous iterations and selects samples
where the models disagree the most. This is done by constructing a very dense,
randomly perturbated grid over the entire design space (typically 2500 points, even
though the number may be higher for high-dimensional problems). The method then
evaluates and compares the best models from the previous iterations on this grid.
This is done by subtracting the outputs from these models pairwise from each other
and finding the locations on the grid where the difference is greatest, as described
by [22]. Locations where the models disagree indicate locations of high uncertainty
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Fig. 6.1. Flow-chart of the SUMO Toolbox.

and will be sampled next. Because surrogate models can be evaluated fairly quickly,
evaluating them over such a dense grid is usually not a problem. From now on we will
refer to this strategy as model error sampling, because it estimates the approximation
error by subtracting the model outputs from each other. Finally, random sampling
was also included as a base case.

6.1. SUMO research platform. In order to compare the different sampling
strategies, each method was implemented in the SUrrogate MOdeling (SUMO) re-
search platform [15, 17]. This MATLAB toolbox, designed for adaptive surrogate
modeling and sampling, has excellent extensibility, making it possible for the user to
add, customize, and replace any component of the sampling and modeling process. It
also has a wide variety of built-in test functions and test cases, as well as support for
many different model types. Because of this, SUMO was a good choice for conducting
this experiment.1

The work-flow of SUMO is illustrated in Figure 6.1. First, an initial design
(typically a sparse Latin hypercube or a fractional design) is generated and evaluated.
Then, a set of surrogate models is built, and the accuracy of these models is estimated
using a set of measures (for example, cross-validation or an external validation test
set). Each model type has several hyperparameters which can be modified, such as
the order of numerator and denominator for rational models, number and size of
hidden layers in neural networks, smoothness parameters for radial basis function
(RBF) models, and so on. These parameters are adjusted using a hyperparameter
optimization technique, and more models are built until no further improvement can
be made by changing the hyperparameters. If the overall desired accuracy has not
yet been reached, a call is made to the sequential design routine, which selects a new
sample to be evaluated, and the algorithm starts all over again. For more information
on the different components of the SUMO Toolbox, please refer to [17, 14].

We used a very sparse Latin hypercube (10 samples) augmented with a 2-level
fractional design as the initial design for the SUMO Toolbox. Because we want to
measure the efficiency of a sequential design strategy, the initial design is kept very
small, so that the majority of the samples are chosen adaptively.

The quality of the model is measured by comparing the model against a very

1The SUMO Toolbox v7.0 (including all the algorithms described in this paper) can be down-
loaded from http://www.sumo.intec.ugent.be, allowing for a full reproduction of the experiments.
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dense, pre-evaluated test set. Thus, the error is a very accurate estimate of the true
prediction error of the model. Each run will be terminated when the root mean square
error (RMSE) of the model is below 0.05. The RMSE is defined as

(6.1) RMSE(f, f̃) =

√√√√ 1

n

n∑
i=1

∣∣∣f(qi)− f̃(qi)
∣∣∣2,

where f is the target function, f̃ is the surrogate model, and qi are the samples in
the dense pre-evaluated test set. At the end of each run, the number of samples
required to reach this accuracy will be recorded. To take into account noise caused by
random factors in the SUMO Toolbox (such as randomization in the model parameter
optimization algorithm), the configuration for each sampling strategy will be run 10
times, and the average will be used for the results.

6.2. Test cases. Three test cases will be examined in this study, each demon-
strating the quality and robustness of LOLA–Voronoi in a different context.

6.2.1. Case 1: Peaks function. The first test problem is a 2D function called
Peaks, which is available in MATLAB as a built-in command. The Peaks function is
obtained by translating and scaling Gaussian distributions. It is interesting to note
that the function is almost zero on the entire domain except for the region close to the
origin, where it has several local optima in close proximity. In order to demonstrate
the ability of LOLA–Voronoi to zoom in on nonlinear regions, the problem will be
modeled on three different domains [−3, 3]2, [−5, 5]2, and [−8, 8]2. We expect that
the advantage of LOLA–Voronoi over the other methods will substantially increase as
the domain grows, because the larger domains will contain proportionally more flat
space. The Peaks function for [−5, 5]2 is illustrated in Figure 6.2(a).

Because the Peaks function is a combination of Gaussian distributions, Kriging
is a natural choice for modeling this function. Kriging originates from geostatistics
and was introduced as part of a modeling technique called Design and Analysis of
Computer Experiments (DACE) [34]. In Kriging, the surrogate model is of the form

(6.2) f̃(x) =
n∑

i=1

βihi(x) + Z(x).

(a) Peaks (b) LNA

Fig. 6.2. The first two test problems.
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The first part of the equation is a linear regression model, while the second part
Z(x) is a Gaussian random process with zero mean and nonzero covariance. Because
the correlation function for the random process Z(x) is taken to be Gaussian, the
Peaks function can be modeled accurately. However, the convergence rate of the
modeling process greatly depends on the sampling strategy. It is expected that a
sampling strategy which focuses extensively on the highly dynamic area near the
origin will converge faster than a strategy which samples the design space uniformly,
since many samples will be wasted on the flat regions near the edges of the design
space. After each sequential step, the hyperparameters of the Kriging model are
optimized dynamically.

6.2.2. Case 2: Low-noise amplifier. The second test problem is a test case
from electronics: a narrowband Low Noise Amplifier (LNA), which is a simple RF
(radio frequency) circuit [27]. An LNA is the typical first stage of a receiver, having
the main function of providing the gain needed to suppress the noise of subsequent
stages, such as a mixer. In addition it has to give negligible distortion to the signal
while adding as little noise as possible itself. The performance figures of an LNA
(gain, input impedance, noise figure, and power consumption) can be determined
by means of rigorous computer simulations where the underlying physical behavior is
accurately taken into account. From these performance figures, the input noise-current√
i2in, which is shown in Figure 6.2(b), was chosen because it is the most challenging

performance figure of the LNA [18]. The input parameters are the inductance Ls and
the MOSFET width W . The input space is scaled to [−1, 1] for practical reasons.
Note that the response is very linear in most of the design space, except for one very
tall ridge where W = 0, which makes it an excellent test case for LOLA–Voronoi. For
more information on this problem, please refer to [18].

To demonstrate the efficiency of LOLA–Voronoi in suboptimal conditions, the
LNA problem will be modeled with three different model types. The first model type
is artificial neural networks (ANN), because they have proven to be the best choice
for this test case in related studies [17]. The ANN models are based on the MATLAB
Neural Network Toolbox and are trained with Levenberg Marquard backpropagation
with Bayesian regularization [31] (300 epochs). The topology and initial weights are
optimized by a genetic algorithm. Furthermore, the LNA problem will also be modeled
with RBF models and rational models. In preliminary experiments, both RBF models
and rational models had more difficulty modeling the LNA problem than ANN. The
goal is to demonstrate that, even with a suboptimal pairing of model and problem,
LOLA–Voronoi should produce better results than uniform sampling.

6.2.3. Case 3: Shekel function. The third and final test case is the Shekel

function, which is a well-known multidimensional test function from optimization [37].
We use the four-dimensional (4D) version on a [2, 6]4 domain, with a global optimum
at (4, 4, 4, 4). In order to demonstrate the scalability of LOLA–Voronoi to higher
dimensions, this problem was modeled in two, three and four dimensions. For the
2D case, the last two inputs were fixed at 4, while in three dimensions only the last
input is fixed at 4. The 2D and 3D versions of the function are shown in Figure 6.3.
Note that only one nonlinear region exists around (4, 4, 4, 4). In the 3D case, for other
values of z besides 4, the function remains mostly zero.

This function was modeled in all dimensions with artificial neural networks, be-
cause of their good overall performance and robustness. Because of the simple nature
of the surface, it is expected that, even for higher dimensions, it should be relatively
easy to model this problem using ANN.
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(a) Shekel 2D (b) Shekel 3D

Fig. 6.3. The 2D and 3D versions of the Shekel function modeled in this experiment.

6.3. Results. The results of the experiments are depicted in Table 6.1.

For the Peaks function, LOLA–Voronoi produced the best results in every test
case, performing 15% better than Voronoi-based sampling, 29% better than model er-
ror sampling, and 36% better than random sampling on the [−3, 3] domain. Voronoi-
based uniform sampling performs much better than random sampling because the
sample size is relatively small, resulting in large unsampled regions for random sam-
pling, while Voronoi-based sampling properly covers up the design space quite uni-
formly. The model error method, even though it is an exploitation-based method,
performs worse than space-filling sampling using Voronoi, but is still better than ran-
dom sampling. On the [−5, 5] and [−8, 8] domains, LOLA–Voronoi requires only a
small number of additional samples to fill up the flat regions, while Voronoi-based,
model error and random sampling both waste large amounts of samples on these
regions, resulting in a huge difference in the total number of samples compared to
LOLA–Voronoi. On the [−8, 8] domain, Voronoi and model error sampling require,

Table 6.1

Summary of the test results of modeling Peaks, LNA, and Shekel with different sampling strate-
gies. The average number of samples required to reach an RMSE error of 0.05, and the standard
deviation (over 10 runs) are shown for each sampling strategy.

Sampling strategy Peaks [−3, 3] Peaks [−5, 5] Peaks [−8, 8]
LOLA–Voronoi 90 ± 0 114 ± 4 135 ± 16
Voronoi 106 ± 6 247 ± 7 516 ± 26
Model error 126 ± 9 275 ± 31 648 ± 33
Random 141 ± 14 355 ± 92 720 ± 190

LNA ANN LNA RBF LNA rational
LOLA–Voronoi 95 ± 2 183 ± 19 131 ± 26
Voronoi 173 ± 8 > 1500 * 1112 ± 714
Model error 435 ± 74 > 1500 * 1048 ± 465
Random 263 ± 140 > 1500 * 1567 ± 756

Shekel-2D Shekel-3D Shekel-4D
LOLA–Voronoi 81 ± 12 195 ± 74 204 ± 69
Voronoi 122 ± 16 448 ± 107 543 ± 103
Model error 72 ± 6 199 ± 51 212 ± 63
Random 134 ± 26 511 ± 158 557 ± 274

* The RBF implementation in the SUMO Toolbox can only generate models up
to 1500 data points, due to memory limitations in MATLAB. Since the accuracy
was not reached at this point, the run was halted.
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respectively, about 3 and 5 times the number of samples that LOLA–Voronoi needs
to achieve the same accuracy.

For the LNA test case, a considerable improvement can be noted as well. Be-
cause there is only one small nonlinear region, focusing heavily on this region greatly
improves the accuracy. LOLA–Voronoi quickly identifies this nonlinear region and
selects additional samples nearby. This allows LOLA–Voronoi to reach the same ac-
curacy as Voronoi with only half the number of samples in the ANN case. In this
test case, model error sampling needs considerably more samples than random sam-
pling. This highlights an important issue with the model error method: its inherent
instability. Model error sampling tends to cluster points in locations that are difficult
to approximate by the model type used, leaving large portions of the design space
undersampled and unexplored. If the initial experimental design does not have any
samples located on the ridge, the model error method will focus on improving (rela-
tively) uninteresting regions, instead of exploring the design space to locate this ridge.
This can severely reduce the performance of the method.

For the other model types, the difference is even more dramatic: for RBF mod-
els, LOLA–Voronoi needs only 183 samples, while the other methods fail to achieve
an accuracy of 0.05 at all before reaching 1500 samples, at which point the SUMO
Toolbox was aborted due to memory limitations. It is expected that, eventually, an
accuracy of 0.05 can be reached, but this might take thousands of samples. For ratio-
nal models, LOLA–Voronoi needs only 131 samples, while the other methods require
an order of magnitude more. This example highlights the importance of focusing on
difficult regions of the design space. Please note again that these results were obtained
by running the toolbox 10 times for each configuration, thereby ruling out potential
lucky runs.

Finally, the Shekel function demonstrates that LOLA–Voronoi works just as well
in higher dimensions. For this test case, model error sampling shows that under the
right circumstances, it can produce very good results, obtaining an average number
of samples marginally lower than LOLA–Voronoi for the 2D case, and marginally
higher for the 3D and 4D cases. These two methods perform considerably better in
two, three, and four dimensions than Voronoi-based and random sampling. In the
4D case, LOLA–Voronoi needs less than half of the samples that Voronoi needs, and
little more than 1/3 of the samples random sampling needs. The Shekel function has
only one nonlinear area near the middle of the design space. In higher dimensions,
the part of the design space that is completely linear is much larger than in lower
dimensions. Therefore, the gap between exploitation-based and exploration-based
methods is much larger in higher dimensions. Even though model error sampling
performs very well for this last test case, the previous two cases show that it is a
very unstable method, which can do very well and very poorly, and its performance is
largely dependent on the problem at hand and the model type used. LOLA–Voronoi,
on the other hand, works very well for all the test cases, for different model types
and for multiple dimensions, due to its robust implementation of exploration and
exploitation.

To illustrate how LOLA–Voronoi identifies nonlinear regions while still maintain-
ing proper domain coverage, one run with the LOLA–Voronoi algorithm for each test
problem is shown in Figure 6.4. Figure 6.4(a) contains all the points that were se-
lected by LOLA–Voronoi during one of the runs for the Peaks problem on the [−5, 5]
domain, while Figure 6.4(b) contains the samples selected during one run of the LNA
problem. Finally, Figure 6.4(c) shows one run for the 2D version of the Shekel prob-
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(a) The Peaks function (b) Input noise-current

√
i2in of

an LNA

(c) Shekel 2D

Fig. 6.4. The sample distribution of one run of the first two test cases using the LOLA–Voronoi
hybrid sampling strategy.

lem. It is clear that the hybrid strategy efficiently located the nonlinear regions and
focused sampling heavily on those regions, without completely neglecting the other
parts of the design space. In Figure 6.4(a), the flat region near the edges is sampled
sparsely, but the samples are distributed quite evenly over the entire flat region. The
steep slopes in the middle are sampled much more densely than gentler slopes, which
are still sampled more densely than the flat regions. In Figure 6.4(b), the tall ridge is
sampled much more densely than the rest of the design space. Due to this intelligent
sampling approach, the average number of samples required is reduced drastically,
potentially saving lots of resources and time.

7. Conclusion. In this paper, we proposed a novel hybrid sequential design
technique that combines an exploration metric based on Voronoi tessellations with an
exploitation metric using local linear approximations. We showed that LOLA–Voronoi
performs better than the model error–based, Voronoi-based, and random sampling
methods in a number of different test cases, thus demonstrating the usefulness of
hybrid sequential design methods. It was shown that LOLA–Voronoi outperforms the
other methods for different model types and problems and in multiple dimensions.
LOLA–Voronoi was also successfully applied to multiple real-world test cases from
different problem domains by users of the SUMO Toolbox in several other studies.
Because of its efficiency, it has since become the default sequential design strategy for
the SUMO Toolbox.

LOLA–Voronoi was designed as a very robust, reliable, and widely applicable se-
quential design method, able to produce good results with any model type, regardless
of the problem at hand. To achieve this, the only information used to guide the sam-
pling process consists of previously evaluated samples and their output values. The



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1972 CROMBECQ, GORISSEN, DESCHRIJVER, AND DHAENE

robustness of the sequential design method comes at a cost, however. It is rather slow
compared to other sequential design methods, mainly due to the expensive preprocess-
ing required to estimate the gradient (O(n2) in the number of samples). However, this
additional cost becomes negligible in a real-life environment in which sample evalua-
tions may take hours or even days, and many heuristics are available to substantially
reduce the overhead of LOLA–Voronoi.

In future work, the newly proposed method will be further compared and tested
against other sequential design methods on real-world problems. The relative effect of
the weights of both components (LOLA and Voronoi) on the accuracy of the models
will also be tested, and it will be investigated whether a simulated annealing ap-
proach produces better results. Additionally, we will study how the algorithm can be
extended to support constrained problems and simulators with multiple outputs.

Acknowledgments. The authors would like to thank Jeroen Croon from the
NXP-TSMC Research Centre, Eindhoven, The Netherlands for making the LNA code
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