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SUMMARY

The paper presents a new algorithm for the identification of a positive real rational transfer matrix of a
multi-input–multi-output system from frequency domain data samples. It is based on the combination of
least-squares pole identification by the Vector Fitting algorithm and residue identification based on
frequency-independent passivity constraints by convex programming. Such an approach enables the
identification of a priori guaranteed passive lumped models, so avoids the passivity check and subsequent
(perturbative) passivity enforcement as required by most of the other available algorithms. As a case study,
the algorithm is successfully applied to the macro-modeling of a twisted cable pair, and the results
compared with a passive identification performed with an algorithm based on quadratic programming
(QPpassive), highlighting the advantages of the proposed formulation. Copyright r 2010 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

The present work addresses the problem of the identification of multi-input–multi-output
(MIMO) Positive Real (PR) rational transfer matrices from frequency domain data samples.
Such an identification problem is motivated by the need to get reduced-order lumped
approximations of complex passive electromagnetic structures, characterized either experimen-
tally, by means of network analyzer measurements, or by electromagnetic full-wave simulations.

Reduced-order modeling is nowadays generally known as macromodeling in the area of
electronic systems. This term includes either the identification of a matrix of transfer functions
or the identification of a state–space realization, from data samples either in the frequency [1–8]
or in the time domain [9–10]. In this work, we only consider frequency domain macromodeling.

Macromodels of passive distributed structures are building blocks of complex systems, which
are usually simulated by means of circuit simulators. Owing to their mathematical
representation, the inclusion of a macromodel into such circuit simulators is conceptually
straightforward. Moreover, macromodeling enables the use of recursive convolutions, this way
reducing the computational cost of the simulations [11].
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The identification of a reduced-order model can generally be formulated as a nonlinear
constrained optimization problem. However, in order to reduce the complexity of the
optimization problem, the identification schemes depart quite significantly from that general
formulation, as we discuss in the following.

Electromagnetic systems subjected to macromodeling are often passive (i.e. they cannot
generate energy). Relevant examples are in the area of electronic interconnects [9] or power
systems [12]. Passivity is an important property, which must be preserved when generating
macromodels for simulation: this means that a reduced model of a passive system should be
passive as well. In fact, stable models that do not preserve passivity may lead to an overall
unstable network when coupled with other (stable and even passive) circuit blocks. The
instability of the overall network is not trivial to predict; therefore, macromodeling approaches
must include a suitable method to achieve the passivity of the generated models.

The Vector Fitting (VF) algorithm [1, 7, 13, 14] is nowadays recognized as one of the most
efficient and robust approaches for the frequency domain rational approximation. At the same
time it cannot guarantee that the identified transfer function is a PR function (i.e. it represents a
passive system), even if the original data set does verify passivity constraint at any frequency.
Therefore, in this scheme, passivity must be checked after the model identification and, in case of
any violation is found, it must be enforced by applying some post-identification perturbations to
model parameters.

Passivity enforcement schemes can be classified into two groups. The first one includes those
algorithms that can enforce the passivity constraints only at discrete frequency samples (e.g. [15–17]).
The second one includes algorithms that can rigorously guarantee passivity at any frequency
by means of Hamiltonian eigenvalue perturbation (e.g. [18–21]). All the passivity enforc-
ement algorithms may lead to severe accuracy losses and sometimes fail to converge. On the
positive side, they are applicable to large structures and scale favorably with the model
complexity [22].

An alternative approach to passivity enforcement is the direct identification of a passive
macromodel from data samples [23–25]. These methods enable the identification of a priori
guaranteed passive models, which means that the passivity check and subsequent enforcement
via perturbation of model parameters are not necessary. Within this category some schemes
have been proposed [3–5, 26] which is based on the idea of identifying the reduced model as a
combination of guaranteed passive sub-systems.

A more general and rigorous approach was presented in [23], and is based on the idea of
exploiting Positive Real Lemma (PRL) [27] for a priori imposing passivity constraints.
The identification process is divided into two steps: first the system poles are identified,
then the identification of residues (with fixed poles) under the passivity constraints is formulated
as a convex programming problem. This latter approach has the fundamental advantage of
being theoretically sound, since the final result is the best approximation of the data set for a
given pole set. The main limitation is the increased computational effort due to the convex
programming formulation, which suggests limiting its use to relatively moderate complexity
structures [22].

In this paper, we present an a priori passive identification algorithm based on convex
programming, namely the ‘Positive Fraction Vector Fitting’ (PFVF). The PFVF algorithm was
first introduced in [24] for single-input–single-output systems, and is extended in this paper to
MIMO systems. It is basically based on the idea of expanding the transfer matrix in a pole-
residue form enforcing that all the single ‘fractions’ are PR functions. This sub-optimal
formulation (as compared with [23]) aims at reducing the computational effort while preserving
the rigorous enforcement of passivity constraints via convex optimization, at the same time
generalizing the approach of constraining passivity in sub-system previously mentioned.

After a discussion of the main features of the proposed formulation contrasted to the general
PRL approach, we first describe the algorithm implementation, then we validate and test it on
the identification of a reduced passive model for a typical unshielded twisted pair (UTP) cable.
Some practical advantages of the proposed formulation are then brought to evidence by the
comparison to a well-established passivity enforcement algorithm [15].
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2. GENERAL CONDITIONS FOR PASSIVITY IN CIRCUITS

Admittance and impedance matrices of passive electrical networks (hybrid representation) are
PR matrix rational functions [28]. A square matrix H(S) is said to be PR if it satisfies the
following conditions:

H ðsÞ is analytic forRefsg40; ð1Þ

H�ðsÞ ¼ H ðs�Þ forRefsg40; ð2Þ

H ðsÞ þ H H ðsÞX0 forRefsg40; ð3Þ

where � indicates the complex conjugate, H the Hermitian (conjugate transpose), and X the
positive semi-definiteness.

When a scattering representation is used the positive realness condition (3) is replaced by the
bounded real condition:

I � HH ðsÞH ðsÞX0 forReðsÞ40: ð4Þ

In the present work only hybrid representation is considered. However, this does not result in
a loss of generality because of the practical equivalence of the two representations.

Note that conditions (1) and (2) are satisfied by any strictly stable transfer functions (i.e. a
rational function of s with all its poles in the left half plane); therefore, only (3) has to be
checked/enforced in practice when dealing with any approximation that involves stable poles.
Condition (3) is equivalent to:

eigfRe½H ðjoÞ�gX0 for anyo40; ð5Þ

where ‘eig’ denotes the entire set of the eigenvalues of H(jo).
The conditions (1)–(3) can be expressed in an equivalent form basing on a state–space

realization of the considered transfer function:

dx
dt
¼ AxðtÞ þ BuðtÞ; ð6Þ

yðtÞ ¼ CxðtÞ þ DuðtÞ; ð7Þ

where n is the system order, m is the number of inputs and outputs, A 2 <n�n is the state matrix,
B 2 <n�m is the input matrix, C 2 <m�n is the output matrix, and D 2 <m�m is the direct term.
Positive realness of the transfer functionH(s)5D1C(sI�A)�1B is equivalently expressed by the
following Positive Real Lemma (PRL) [27]:

Theorem
Let fA;B;C;Dg be a controllable state–space model whose transfer function is H(s)5D1

C(sI�A)�1B. Let fA;B;C;Dg be stable, i.e. all of poles of H(s) are either in the left half plane or
on the imaginary axis, in which case they are simple. If there exists a K5KT such that the
following linear matrix inequalities are satisfied:

�ATK � KA �KBþ CT

�BTK þ C Dþ DT

� �
X0;

KX0;

ð8Þ

then H(s) is PR. Vice-versa, if H(s) is PR then a matrix K5KT exists such that (8) are satisfied.

3. PASSIVE IDENTIFICATION VIA CONVEX PROGRAMMING AND PFVF

Condition (5) is often used for the passivity enforcement on a discrete set of frequencies foig; i 2
I chosen in the frequency intervals where at least one eigenvalue assumes negative values
(passivity violation intervals). Although this approach can work well in several applications
[15–17], further research has been overtaken to rigorously guarantee the passivity at any
frequency [18, 19, 23, 24]. Nevertheless, to the best of our knowledge, all the passivity
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enforcement methods are iterative algorithms to a certain extent based on linearization. They
iteratively apply first-order perturbations to (non-passive) model parameters for correcting
passivity violations. Several iterations may be required to converge, and even the convergence
may not be guaranteed every time (i.e. passivity violations do not disappear).

An a priori passive identification approach based on convex programming has been
introduced in [23] by Coelho et al. The possibility of formulating a convex minimization
problem follows the idea of a two-step identification process, where the poles are identified
first. Then the PR constraints (8) become convex (positive) semidefinite constraints by keeping
the matrices A and B as constants in the optimization problem. In this way, products of
variables (matrices) do not appear in the optimization problem. Matrix A may be pre-estimated
by means of a pole identification algorithm, without taking into account the passivity
constraints. Matrix B does not need to be estimated, since it can be kept fixed exploiting the
degrees of freedom available in the state–space representation (see [23] for details). Hence,
assuming a convex error function (to be minimized), convex programming can be applied.
Matrices C and D can be computed by minimizing the approximation error, while requiring
that the PRL is satisfied. Assuming that all the frequency samples f ~H ðjokÞgk¼1...K equally
contribute to the least-squares error (no different weights applied), the identification problem
can be settled as

fC;Dg ¼ argmin
C;D;K

vec H ðjokÞ � ~H ðjokÞ
� ��� ��

2

subject to :

�ATK � KA �KBþ CT

�BTK þ C Dþ DT

" #
X0;

KX0:

ð9Þ

where H ðjoÞ ¼ Dþ CðjoI � AÞ�1B is the identified transfer function. Although this approach is
mathematically optimal (being based on a necessary and sufficient condition), the optimization
algorithm has to handle more variables than the model parameters (matrices C and D), since the
matrix K is a part of the optimization problem.

The PFVF identification procedure works as follows. Let us consider a pole residue
expansion of the transfer matrix as

H ðsÞ ¼ R0 þ
XN

i¼1

Ri

s� pi
; ð10Þ

where each term is subject to the passivity constraints (5). It is trivial to determine that for the R0

term, and for the case of Ri=ðs� piÞ with pi a real pole, condition (5) in terms of the residue
matrices rewrites:

R0X0;

RiX0:
ð11Þ

The case of complex conjugate poles, once the pairs ðRi=ðs� piÞÞ þ ðR�i =ðs� p�i ÞÞ are
considered together, leads to the conditions for the residue matrices Ri:

� ½ReðpiÞReðRiÞ þ ImðpiÞImðRiÞ�X0

� ½ReðpiÞReðRiÞ � ImðpiÞImðRiÞ�X0
ð12Þ

Note that:

1. constraints (11)–(12) are frequency independent;
2. after the poles have been identified, the constraints expressed by (12) are linear matrix

inequalities with respect to the residues.
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For any approximation of an immittance matrix in the form (10) under the constraints
(11)–(12), the passivity of the whole expansion follows trivially from that of each term.
Moreover, it is important to note that such passivity conditions are sufficient but not necessary,
since interconnection of passive and active systems (circuits) may lead to passive systems as well.
This may lead in principle to sub-optimal solutions as compared with the PRL approach.

As we already mentioned, the idea of exploiting passive ‘building blocks’ (named ‘Positive
Fractions’ (PF) in this work) to realize passive macromodels is common also to other
identification methodologies, as in [4–5]. The novel contribution of PFVF is the identification
scheme, which combines VF pole identification with convex identification of residues.

After the identification problem is formulated as above, we now describe the identification
procedure we settled. First, the (stable) poles estimation is pursued by means of standard VF.
Identification of residues fRig in (10) is pursued by minimizing the error between data samples
f ~H ðjokÞgk¼1::K and the approximation model (evaluated in the same frequency samples)
fH ðjokÞgk¼1::K , under the passivity constraints (11)–(12), formulating the constrained norm
minimization problem:z

fRig ¼ argmin
fRig

vec H ðjokÞ � ~H ðjokÞ
� ��� ��

2

subject to :

R0X0

for i ¼ 1 : N

if pi is real

RiX0

else if pi and piþ1 are a complex conjugate pair

� ReðpiÞReðRiÞ þ ImðpiÞImðRiÞ½ �X0

� ReðpiÞReðRiÞ � ImðpiÞImðRiÞ½ �X0

end

ð13Þ

The problem (13) is convex (e.g. [29]). In order to solve it, we use CVX [30, 31], a package for
specifying and solving convex programs. CVX accepts a convex program specification in the
form (13), automatically transforms it into a semidefinite program, and finally calls the relevant
solver (SDPT3 or SEDUMI). It is worth to note that a semidefinite programming solver
does not accept a norm minimization problem, since the standard form of a semidefinite
program involves the minimization of an affine function [32].

We conclude this section with some remarks about the computational cost of the considered
formulation. There is a certain trade off between perturbative algorithms and convex
programming-based algorithms: with the former convergence to passive models is not a priori
guaranteed, and the identified model can degrade significantly the accuracy; on the other hand
computational cost increases slower as compared with convex programming [22]. Therefore, the
convex programming approach, although recognized as more general and theoretically sound, is
suggested for problems of moderate complexities (number of ports� number of poles). What is
to be considered specifically for PFVF convex formulation is that the number of unknowns of
the optimization grows linearly with the model order n, whereas with the convex formulation
based on PRL [23], it grows quadratically (due to the presence of the (n21n)/2 additional
variables of auxiliary matrix K). In particular, it can be easily verified that the optimization
problem (9) has mn1m21(n21n)/2 unknowns, whereas the problem (13) has just (N11)m2

unknowns, with n5mN [33], where the number of unknowns can be reduced of about half by
enforcing symmetry of H in proper cases.

zThe vec( � ) operator stacks the column of the matrix into a single vector, e.g. vec
a11 a12
a21 a22

� �
¼

a11
a21
a12
a22

0
BB@

1
CCA:
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4. A VALIDATION CASE: MACROMODELING OF TWISTED CABLES

In this section, the proposed PFVF approach is validated with reference to the identification of a
passive macromodel of a typical Unshielded Twisted Pair (UTP) as shown in Figure 1.
Furthermore, the same case study is also tackled by means of a highly effective passivity
enforcement procedure (QPpassive [15]), and results obtained with the two algorithms are
compared.

Twisted cables are largely used to reduce EMI effects induced by external fields and crosstalk
produced by parallel wires. In the past, they were modeled by means of the transmission line model to
predict susceptibility and crosstalk. However, the radiation and dispersion effects cannot be adequately
taken into account through this model; hence, giving an incorrect description of the high-frequency
behavior [34]. A more accurate characterization can be achieved by full-wave electromagnetic
simulations [35]. The typical outcome of such simulations are admittance matrix frequency samples,
which can be used to derive a macromodel. In [34] the passivity issue is not considered at all, leading to
non-passive macromodel with the already mentioned negative consequences.

We consider as case study two twisted copper wires interconnect, with a twist pitch of
16.95mm, a circular cross section of radius 0.25mm, and a center-to-center distance between the
conductors of 0.9mm. Three twist pitches of this interconnect structure have been simulated
with a full-wave code named SURFCODE, which implements the approach [35]. Admittance
matrix frequency samples were computed in the frequency interval [0–1GHz] (100 linearly
spaced samples) and used for the identification of a passive reduced-order model.

The identification of a reduced model for such a structure performed with the PFVF
algorithm is compared with the quadratic programming passivity enforcement algorithm
(QPpassive) introduced in [15]. Note that the same macromodeling problem was tackled in [6]
with the approach [18], which is not therefore considered in this paper.

Figures 2 and 3 show, respectively, the reference (data) of Y11, Y12 (magnitude and phase) vs
identification as obtained with the proposed PFVF algorithm, standard VF, and VF followed by
the QP-passivity enforcement (with a single or more iterations). The comparison has been
performed with the same number of poles (N5 16) and the same number of VF iterations (10).

As readable from Figures 2 and 3, all the considered identification schemes achieve similar
and satisfactory accuracies. The model generated with pure VF identification [1] exhibits
passivity violations outside the band of the frequency response used for identification
([0–1GHz]). In particular, the first eigenvalue has a large negative spike between 1.5 and
2GHz (Figure 4(a)), whereas the second one is always positive (Figure 4(b)). We just note that
passivity violations can originate unstable transient simulations even when they arise outside the
frequency band of interest, since PR part poles may appear and be excited (e.g. [5]).

The QPpassive algorithm enforces passivity at a discrete set of frequencies where violations
occur, the number and location of such samples being user-defined parameters. In the shown
example, a first attempt to compensate the passivity violation was performed by enforcing the
passivity constraint at the frequency sample corresponding to the minimum of the first eigenvalue
(Figure 4(a, b): VF1QP no iterations). Although greatly damped, the violation in the first
eigenvalue still remains (Figure 4(a)). In addition, a new violation appears on the second

Figure 1. Schematics of a two-conductors unshielded twisted cable with a typical mesh for SURFCODE
simulation.

L. DE TOMMASI ET AL.380

Copyright r 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. 2011; 24:375–386

DOI: 10.1002/jnm



eigenvalue (Figure 4(b)). This unsuccessful attempt suggests implementing an iterative scheme,
where a new QP-enforcement occurs until all the passivity violations are removed (Figures 2, 4:
VF1QP iterations). A new QP-iteration has to enforce that the model is passive at those
frequencies where violations arose in the previous iterations (in addition to frequencies where

Figure 2. (a) Magnitude of the admittance functions Y11 of a two-conductors twisted cable compared with
its VF, PFVF and VF1QPpassive approximations and (b) Magnitude of the admittance functions Y12 of a
two-conductors twisted cable compared with its VF, PFVF and VF1QPpassive approximations. The three
curves ‘Deviation VF’, ‘Deviation VF 1 QP no iter.’, ‘Deviation VF1QP iter.’ are overlapped because

QPpassive did not modify the Y12 term.

Figure 3. Phase angle of the admittance functions Y11, Y12 of a two-conductors twisted cable compared
with VF and PFVF approximations.
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violations of the original model were located). Several variants are possible, and it is up to the
user to implement the strategy that works better for the problem at hand [36]. Furthermore,
passivity cannot be guaranteed, however it is often achieved. This also happens in the given
example. Note that the QP-passivity enforcement was performed modifying only the diagonal
elements of the residue matrices. This can be seen from Figure 2(a, b), which show that the error
(deviation with respect to the reference data) of the VF approximation of Y11 is increased after
the passivity enforcement, whereas the error of Y12 remains the same. A more accurate result
could be expected when more free variables are included in the optimization problem, but this
increases the computational cost.

The results shown in this section are summarized as follows. Both the PFVF and VF1

QPpassive algorithms successfully achieved the identification of a passive macromodel of the
considered case study, with similar accuracies. The proposed PFVF algorithm solves the
identification problem by means of a single (convex) optimization problem. On the other hand,
with the QPpassive algorithm, as the enforcement of passivity at some frequency locations may
fail or result in new passivity violations at some other frequencies, the user has to implement a

Figure 4. (a) First eigenvalue of the 2� 2 matrix Re(Y) of a two-conductors twisted cable compared with
VF, PFVF and VF1QPpassive approximations and (b) Second eigenvalue of the 2� 2 matrix Re(Y) of a

two-conductors twisted cable compared with VF, PFVF and VF1QPpassive approximations.

L. DE TOMMASI ET AL.382

Copyright r 2010 John Wiley & Sons, Ltd. Int. J. Numer. Model. 2011; 24:375–386

DOI: 10.1002/jnm



proper iterative strategy. This may be done in different ways and typically involves the solution
of several quadratic programming optimization problems.

5. CONCLUSIONS

We introduced a new algorithm for the direct identification of passive MIMO macromodels
from frequency response data samples. Passivity constraints are imposed on the single transfer
function terms via convex programming. This sub-optimal formulation reduces the number of
optimization variables with respect to the optimal identification scheme based on the PRL. The
new approach has been successfully validated on a twisted cable macromodeling problem and
compared with an iterative passivity enforcement algorithm (QPpassive). Major advantages of
the proposed formulation are:

(1) model passivity is a priori guaranteed at any frequency (as passivity constraints are
frequency independent); therefore, the search for passivity violations and subsequent
enforcement are not necessary;

(2) if the convex optimization problem is feasible then the passivity is achieved by solving a
single optimization problem, whereas passivity enforcement algorithms require the
iterative solution of optimization problems;

(3) the complexity of the convex optimization problem is reduced with respect to the general
formulation [23] based on the PRL, as the number of variables grows linearly with the
model order instead of quadratically.

APPENDIX A: CONVEX OPTIMIZATION PROBLEMS

The general form of a (non-linear) optimization problem is:

minimize f0ðxÞ

subject to :

fiðxÞX0; i ¼ 1 . . .m;

hiðxÞ ¼ 0; i ¼ 1 . . .p:

ðA1Þ

An optimization problem is said to be ‘convex’, when f0 and the inequality constraints fi are
convex functions,y and the equality constraints hi are affine hi ¼ aT

i x� bi [32, 37]. Three
important properties of convex optimization problems are [38]:

(1) optima are guaranteed to be global: if a local optimum is found, then the optimum is
global;

(2) efficient numerical methods are available;
(3) numerical algorithms can effectively detect infeasibility, unboundedness and near-

optimality (using duality theory).

Convex programming solvers are designed to handle specific problems known as standard
forms, rather than the general form (A1). Therefore, in order to be solved, a generic convex
programming problem has to be transformed into one standard form. Such transformations rely
on a set of known mathematical rules. However, existing optimization software provides a high-
level interface with solvers, automatically performing transformations needed to solve many
convex problems formulated in non-standard forms (e.g. [31]).

yA function f: <n!<n[1N is defined ‘convex’ when satisfies: f ðaxþ ð1�aÞyÞpaf ðxÞ þ ð1�aÞf ðyÞ 8x; y2<n; a2ð0; 1Þ.
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APPENDIX B: THE QP-PASSIVE ALGORITHM

QPpassive tries to enforce the passivity conditions (3b) at a discrete set of frequencies foig; i 2 I
by adding a corrective term DH (B1) to the given non-passive model H (10):

DH ¼ DR0 þ
XN

n¼1

DRn

s� pn
: ðB1Þ

The first-order perturbations fDRng minimize the change DH to the original model H in the
least-squares sense, while enforcing the constraints:

lþ Dl ¼ eigðH ðjoiÞ þ DH ðjoiÞÞX0; i ¼ 1 . . . I : ðB2Þ

The relation between transfer function residues and eigenvalues (3b) is linearized:

Dl ¼ RDx ðB3Þ

being Dx a vector holding the variables of fDRng, and the solution of the least-squares problem
is achieved by solving a quadratic programming problem in the form:

min
Dx

1

2
ðDxTMTMDxÞ

subject to NDxop
ðB4Þ

The details about the computation of M, N and p can be found in [15]. Finally, we remark
that the problem (B4) is formulated by assuming that the relation between eigenvalue and
residue perturbations is linear (B3), but this is just an approximation. Therefore, the solution of
(B4) can still give a non-passive model (an example was given in Section 4). No similar
assumptions are done with convex formulations [23] as well as the PFVF approach proposed in
this paper.
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