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Abstract

This paper introduces a robust Vector Fitting algorithm for
macromodeling of measured or simulated frequency responses
with outliers. The use of a new frequency-dependent weight-
ing scheme ensures that the complex fitting error is minimized
in the L, sense, rather than the L, sense. Numerical results
indicate that this approach leads to more accurate results.

1 Introduction

Robust macromodeling techniques are of paramount impor-
tance for efficient time domain and frequency domain simula-
tion of passive linear microwave systems and devices. Vector
Fitting (VF) has proved to be a fast and reliable method that cal-
culates high-order transfer function from measured or simulated
frequency responses. It has been adopted in many societies of
applied engineering, including power systems and microwave
systems. A recent survey of the methodology is found in [1].

The standard Vector Fitting algorithm computes a macro-
model by minimizing a weighted iterative cost function in the
L, sense [2][3]. However, in real-life situations, it is possible
that outliers in the data strongly degrade the quality of the Lo
fitting model. Outliers are values in the frequency response that
deviate strongly from the other values, and they can be caused
by various measurement or instrumentation errors [4].

This paper discusses a modified Vector Fitting algorithm that
minimizes the L; norm of the complex fitting error instead of
the Lo norm [5, 6]. It gives a more elaborate explanation of the
derivations in [7] and presents a new example which demon-
strates that the approach is more robust towards outliers [8].

2 Li-norm Macromodeling Algorithm

Based on a discrete set of S-parameter data samples
{sk. H(sk) <, VF computes a rational macromodel with
numerator N*(s) and denominator D'(s) in an iterative way
(t =1, ...,T) by successively solving least squares problems

K

argmin S [W(si) | (0 H)! (s) — o' (si) H(s) 2 (1)
k=0

As shown in [1] and [9], both (0 H)"(s) and o' (s) belong to a
linear span of p = 1, ..., P rational basis functions ¥, (s,a’"!)
that are based on the previously identified set of poles a‘!~!. In
the first iteration step (t = 1) these initial poles a® are chosen
by the standard heuristical scheme to ensure a good numerical
conditioning [2]. The basis functions W are typically chosen as
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partial fractions or orthonormal rational functions [10]

t(s P

(oH)'(s) = D]YS()S):CBJFE AW, (5,07 (2)
D'(s) g

ol(s) = Di1(s) =1+ E & Wy(s,a" ") (3)

Note that the cost function (1) also contains a user-defined
weighting function W*(s). This weighting function should not
be confused with the Sanathanan-Koerner weighting, in this pa-
per denoted as w'(s), which occurs implicitly by pole reloca-
tion. In a standard application of Vector Fitting, the value of
Wt(s)is set to 1 by default. However, it is well known that an
additional frequency-dependent weighting factor can provide a
powerful way to control the accuracy of the macromodel.

In the following sections, it will be shown that the L; norm
of the complex fitting error can be minimized by selecting the
user-defined weighting factor W(s) in (1) as follows

_ VA - A
H(s) — H1(s)

W(s) 4)

where H'=1(s) = N'=1(s)/D'!(s) denotes the frequency
response of the macromodel at previous iteration step ¢ — 1.

3 Proof Outline
First, let’s define the auxiliary function f(s) as follows
|D"(s)H (s) — N*(s)/"

D1 (s)H(s) — N1 ()

fls) = )
Applying the weighting factor W(s) in (4) to the cost function
(1) yields the following equivalent expression

K
arg minz |H(sk) — Ht_l(sk){ J(sk) (6)

k=0

Hence, upon convergence of the iterative scheme (D'~ — D?
and N'=1 — N?), it follows that f(s) — 1. Therefore, it is
clear that cost function (6) effectively minimizes the ; norm
of the complex fitting error ||H(s) — H' ' (s)||,.

4 Analysis of the weighting function

In this section, it will be shown how the weighting function
Wt(s) in (4) was derived. The objective of the standard Vector
Fitting procedure is to identify the model parameters in such a
way that the Lo norm of the complex error is minimized

K

arg min E

k=0

N(si) |
D(Sk)

f{(sk)‘* (7)
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To avoid non-linear optimization techniques, a linear set of
equations is obtained by minimizing Levi’s cost function [11]

K
arg min Z |D(s)H (si) — N(sk)|2 8)
k=0
This cost function (8) can easily be generalized by introducing
a frequency-dependent weighting function, denoted as Q(s)

K
argmin Y |Q(s)[* |D(sk) H (sx) — N@se)l* 9
k=0
Note that (7) and (9) are equivalent if Q(s) is setto 1/D(s). In
order to minimize the L; norm of the complex fitting error, a
different weighting function Q(s) is chosen, such that

e _ 1)~ N)/DGs)
YO b)) - NP

Since N(s) and D(s) are not known in advance, they are re-
placed by the estimated numerator N'~!(s) and denomina-
tor D'~!(s) from the previous iteration step. Just like in the
Sanathanan-Koerner iteration [12], inserting these values gives
an estimate Q' (s) of the weight function Q(s) that satisfies

[H(s) — N*"'(s)/D""(s)]

(10)

tg)2 —

@)l |Dt=1(s)H(s) — Nt=1(s)|
B 1 [H(s) = N'"!(s)/D"" ()|
(D)2 [ H (s) = Nt (s)/ D Y(s)

(D)2 | H(s) — HEV(s)[

The use of weighting function Q' (s) leads to updated values of
N*(s) and D(s) in successive iteration steps (t = 1,...,T)

K
. 2
arg min Z|Q’(sk)|2 ‘Dt(sk)H(sk) —Nt(sk,)| (12)
k=0
Inserting (11) in (12) yields the following cost function
K 2
Nt(sk) Dt(sk)
. t 2
arg min kg% [W*(s1)] D1 (se) - thl(sk)H(sk)
(13)
Using the notations in (2) and (3), this is equivalent to
X 2
argmin Y [W(sx)[* [(0H)" (sk) — o' (sk)H(si)| (14)
k=0

From (11), (12) and (13), W*(s) must satisfy the condition
2 _ ’H(S) - Ht_l(sﬂ

Wt(s 15
W= e i) ()
So, in order for (15) to hold, W(s) is chosen as follows
H(s) — H*1

H(s) — H'"!(s)
which corresponds to the user-defined weighting factor of Vec-
tor Fitting in (4). It is found that explicit weighting by Q(s) in
(12) is equivalent to explicit weighting by W(s) in (14) + pole
relocation (i.e. implicit weighting by w'(s) = 1/D*~1(s)) [1].
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Figure 1: Data samples of reflection coefficient S1; (blue dots)
versus magnitude response of the Ly model (red line).
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Figure 2: Data samples of reflection coefficient S1; (blue dots)
versus magnitude response of the L1 model (red line).

5 Example : Coplanar Waveguide

The reflection coefficient S1; of a 2-port coplanar waveg-
uide is considered over the frequency range [0.1 GHz - 50
GHz]. Suppose that, due to inaccuracies in the data acquisi-
tion process, the S-parameter response contains three outlying
data samples which are marked by black arrows in Figs. 1 to 4.

All the data samples are modeled by a rational 6-pole proper
transfer function using the proposed VF methodology (L
norm) and the standard VF algorithm (Lo norm). The mag-
nitude of the data and the magnitude response of the model is
shown in Figs. 1 and 2 respectively. Also the phase of the data
is compared to the phase response of the model, as shown in
Figs. 3 and 4. It is clear that the L; norm approximation yields
an overall accurate result, and is not much affected by the pres-
ence of the outliers. On the other hand, the outliers lead to
an undesired degradation of the model quality for the Ly norm
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Figure 3: Data samples of reflection coefficient S1; (blue dots)
versus phase response of the Lo model (red line).
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Figure 4: Data samples of reflection coefficient S1; (blue dots)
versus phase response of the L; model (red line).

approximation. This observation is also confirmed by Fig. 5
where the absolute fitting error of both models is shown.

Absolute fitting error = |H(s) — H'71(s)| (17)

Fig. 6 visualizes the magnitude of the weighting function
W(s), defined in (16), as a function of the frequency. It is seen
that three sharp spikes occur at the exact frequencies where the
outliers are located. This indicates that the algorithm automat-
ically detects the occurrence of outliers, and gives them a very
small weight when compared to the other data samples. In the
general case, this leads to a better accuracy than the classical
VF algorithm, where W (s) is constant for all frequencies.

As an additional test, the three outliers are manually removed
from the data set and both modeling algorithms are applied to
the remaining data samples. It is seen from Fig. 7 that the
absolute error of both fitting models (L1 and L) is comparable.
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Figure 5: Absolute error L1 model (green) and Lo model (blue).
The data samples contain 3 outliers, shown in Figs 1-4.
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Figure 6: Magnitude of weighting function W¥(s).

This result confirms that L,; norm approximation is particularly
useful in cases where the data is contaminated with outliers.

Conclusions

A modified Vector Fitting algorithm is proposed for L; norm
identification of broadband macromodels from S-parameter
data. The effectiveness of the algorithm is illustrated by apply-
ing it to a coplanar waveguide example, and the results are com-
pared to the standard VF approach. It is found that the method
is more robust when the frequency response contains outliers.
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Figure 7: Absolute error L1 model (green) and Lo model (blue).
All the outliers are removed from the set of data samples.
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