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Adaptive Sampling Algorithm for Macromodeling
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Abstract—This paper presents a new adaptive sampling strategy
for the parametric macromodeling of -parameter-based fre-
quency responses. It can be linked directly with the simulator to
determine up front a sparse set of data samples that characterize
the design space. This approach limits the overall simulation and
macromodeling time. The resulting sample distribution can be
fed into any kind of macromodeling technique, provided that it
can deal with scattered data. The effectiveness of the approach is
illustrated by a parameterized H-shaped microwave example.

Index Terms—Adaptive sampling, frequency response, multi-
variate model, parametric macromodel, sequential design.

I. INTRODUCTION

P ARAMETRIC macromodels are important for the de-
sign, study, and optimization of microwave structures.

Such macromodels approximate the -parameter response of
high-speed multiport systems as a function of frequency, and
several layout variables that describe physical properties of the
structure. They are frequently used for real-time design space
exploration, design optimization, and sensitivity analysis.

The calculation of parametric macromodels has received a
lot of attention over the past years, and many new modeling
approaches were introduced. Most of them are either based on
artificial neural network modeling [1], the multivariate Cauchy
method [2], Thiele-type interpolation [3], combined rational-
multinomial modeling [4], Kriging [5], radial basis functions
[6], vector-fitting-based approaches [7]–[11], and others.

In order to simulate all data samples needed to build such a
parametric macromodel, many full-wave analyses must be per-
formed. Quite often, the data is collected over a predefined dense
grid in the design space. However, since the number of data sam-
ples grows exponentially with the number of dimensions, an ex-
cessive amount of computer resources may be required. For this
purpose, adaptive sampling strategies can be used to determine
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a quasi-minimal distribution of data samples that characterizes
the overall system response [4].

Adaptive sampling strategies often select data samples in a se-
quential way by comparing intermediate macromodels. A draw-
back of this approach is that the selection of new data samples
is highly dependent on the quality of these intermediate models.
If their accuracy is degraded, e.g., by choosing a wrong model
order or by spurious poles occuring in the design space, then the
optimality of the sampling algorithm will break down. It is also
noted that the selection of samples is affected by the model type
(e.g., polynomial, rational, radial basis functions, etc.), which is
not a desirable property. Moreover, it is found that many inter-
mediate macromodels must be calculated before a suitable data
distribution is obtained, leading to an overall slow and cost-in-
effective procedure.

This paper presents a new generic sampling strategy that is
able to resolve all these issues [12]. It can be linked directly
with the simulator to adaptively select a representative set of
data samples before any kind of macromodeling procedure is
applied. The resulting distribution of the data can be fed into
an arbitrary macromodeling technique, provided that it can deal
with scattered data. The effectiveness of the approach is illus-
trated by a scalable microwave H-antenna example.

II. PRELIMINARIES AND NOTATION

Parametric macromodeling algorithms compute a multi-
variate model from a set of parameterized -parameter data
samples . These -parameters
depend on the frequency and several design
parameters . These design parameters
are the layout and material parameters, which describe, e.g.,
the metallizations of a component (lengths, widths, etc.) or
its substrate parameters (thickness, dielectric constant, losses,
etc.).

A full-wave electromagnetic (EM) simulator is used to sim-
ulate the data samples over a fixed set of discrete frequen-
cies at scattered locations in the design space. The de-
sign space is defined as a subspace of that is bounded by
the parameter ranges of , while the scattered locations are in-
stances of the design parameters. In this paper, these instances
are called data points. To limit the overall simulation cost, an
adaptive sampling algorithm is introduced to select a limited set
of data points in an intelligent way. Note that

each data point contains scalar values
that correspond to the design parameters . The goal of the adap-
tive sampling algorithm is to minimize the number of selected
data points, while maximizing the model accuracy.
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III. METHODOLOGY OF ADAPTIVE ALGORITHM

The adaptive algorithm selects a reduced set of data points
that is used to characterize the overall behavior of the response.
To obtain a robust procedure, a tradeoff between two important
criteria must be made: exploration and exploitation.

• Exploration is the act of exploring the design space in order
to find key regions that have not yet been identified before.
Note that exploration does not involve the response of the
system, but only the location of the data points and the way
they are distributed over the design space. It ensures that
the design space is filled up with data points that are spread
as evenly as possible.

• Exploitation means that data points are selected in regions
of the design space that are identified as potentially in-
teresting. It is clear that regions where the response is
highly dynamic require a finer sampling density than re-
gions where the response shows little or no variation.

The new sampling algorithm is a generic approach that com-
bines both criteria in a balanced way [13], [14]. It starts from
a small number of initial data points so that the majority of
data points can be chosen adaptively. For the exploration cri-
terion, the density of data points is quantified by computing a
Voronoi tessellation of the data points and by calculating the
volume of each Voronoi cell (Section IV). For the exploita-
tion criterion, the dynamic variation of the response is quan-
tified by computing simple local linear approximation models
that are compared with the true system response (Section V).
Both criteria are translated into a combined metric function that
is used to rank the neighborhood of the data points. Based on
this ranking, the undersampled regions of the design space are
identified and the optimal location for additional data points is
derived (Section VI). This procedure of adding data points is re-
peated sequentially until the algorithm is terminated.

IV. EXPLORATION—VORONOI TESSELLATIONS

The density of data points is assessed by computing a
Voronoi tessellation [15] of the design space and by estimating
the volume of each cell. Cells having a large volume correspond
to regions in the design space that are sampled sparsely.

Let us assume that a discrete and pairwise distinct set of
points in the design space is given. The domi-
nance of a point over is then defined as follows:

(1)

It represents a closed half-plane that is bounded by the perpen-
dicular bisector of and , and separates all points that lie
closer to than . The Voronoi cell of determines the
portion of the design space that lies in all the dominances of
over all other data points in the set

(2)

It is clear that contains all points in the design space lying
closer to than any other point in . The complete set of
cells tessellates the design space, and is called the

Voronoi tessellation corresponding to the set . Computing the
Voronoi tessellation is usually done by calculating the Delaunay
triangulation from which the Voronoi tessellation is obtained.
In order to compute the volume of each Voronoi cell, the un-
bounded Voronoi cells near the border of the parameter ranges
are bounded. The volume (Vol) of each cell can then easily be
estimated by means of Monte Carlo methods [16].

To assess the density of the data points around , the fol-
lowing normalized metric is introduced:

(3)

Note that quantifies the portion of the design space that
is contained within each Voronoi cell of .

V. EXPLOITATION—LOCAL LINEAR APPROXIMATIONS

Regions of the design space with a high dynamical behavior
are identified as follows. For each point in , a suitable set
of neighboring points is chosen (Section V-A). For
each frequency , these neighbors are used to estimate
the gradient that characterizes the best local linear
approximation at (Section V-B). The response of
this approximation is compared to the true response
at the neighboring points , and quantifies the dynamic
variation in the region of . A large deviation indicates the
regions where the data is varying more rapidly.

A. Selection of Neighboring Samples

To accurately estimate the gradient of the response at a certain
point , a set of neighboring data points

with (4)

must be selected that provide as much information as possible.
This means that neighbors should cover each direction in the
design space equally well. Therefore, neighbors should satisfy
two important properties: cohesion and adhesion.

• Cohesion implies that they must lie as close to the point
as possible such that is minimized

(5)

• Adhesion implies that they must lie as far away from each
other as possible such that is maximized

(6)

These two properties necessarily conflict with each other so
a compromise must be made. In the case of , it is
proven in [17] that the optimal configuration is the -dimen-
sional cross-polytope configuration because it maximizes the
adhesion (6) in all dimensions. Since is the upper
bound for the adhesion value of any neighborhood with cohe-
sion , a cross-polytope ratio is defined,
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which indicates how closely a neighborhood resembles a cross-
polytope (It is assumed that .)

(7)

If , then the neighborhood forms a perfect cross-
polytope configuration. Also, if , then all neigh-
boring data points must lie in the exact same spot, reducing the
adhesion to 0. Since the distance from should also be taken
into account, the cross-polytope ratio (7) is divided by the co-
hesion, leading to the neighborhood score

(8)

Note that neighboring data points are ideally chosen in
such a way that the neighborhood score (8) is maximized.

B. Gradient and Local Linear Approximation

The gradient of the response is defined as

(9)
It is used to characterize the best local linear approximation for

around a specified point as follows [18]:

(10)

Note that is estimated by fitting a hyper-
plane through point based on its neighbors

(11)

(12)

Once the gradient is estimated, the dynamical behavior around
point is quantified by comparing the response of
with the true response at the neighboring points

(13)

To obtain a normalized metric , one defines

(14)

The metric quantifies the portion of the dynamic varia-
tion in the response that is located near point .

VI. ADDITIONAL DATA POINT SELECTION

The exploration-based metric in (3) quantifies data
points according to the size of their corresponding Voronoi cell,
while the exploitation-based metric in (14) quantifies

Fig. 1. 3-D view of the microwave H-antenna.

data points according to the local variation of the response. Both
are combined into a global metric that is used for ranking

(15)

Data points associated with large values of (15) are located
in regions that are likely undersampled, whereas the smaller
values of (15) correspond to regions that are sampled suffi-
ciently dense. If the data point with the maximum value of (15)
is denoted by , then the algorithm select an additional data
point inside the Voronoi cell . Its exact location is chosen
in such a way that the distance from the neighbors
is maximized. Once the new data point is added to , the
procedure is repeated until the algorithm is terminated.

VII. EXAMPLE: MICROWAVE H-ANTENNA

This example deals with the parametric macromodeling of
the reflection coefficient of a scalable H-shaped microwave
antenna. Fig. 1 shows a 3-D view of the antenna, which con-
sists of three layers: a top layer with the H-shaped antenna, a
bottom layer with the feed line, and a middle slot layer with a
rectangular aperture that realizes the coupling between the feed
and the antenna. Fig. 2 shows a top view of the three metal
layers along with their respective dimensions. A cross section
of the structure is shown in Fig. 3, depicting the vertical posi-
tion of the metal layers in the dielectric. The design parame-
ters of the model are the length of the antenna and the width

of the aperture. The frequency range of interest varies be-
tween GHz . All data samples are simulated with
the full-wave planar EM simulator ADS Momentum [19], and
the data points in the design space are selected by the proposed
adaptive sampling algorithm.

A. Adaptive Sample Selection

As a first example, the parameter ranges of the model are set
to mm and mm . The algorithm
starts by simulating an initial set of 24 data points, as shown
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Fig. 2. Top view of the microwave H-antenna.

Fig. 3. Cross section of the microwave H-antenna.

in Fig. 4. This set consists of four data points that are located at
the corners of the design space and 20 additional data points that
are scattered in the design space. Based on the combined metric
function (15), the neighborhood of each data point is ranked,
and the undersampled regions of the design space are identified.
In successive iteration steps, additional data points are selected.
Figs. 5–7 show the distribution of 500, 1000, and 2000 data

Fig. 4. Adaptive sampling of 24 scattered data points (dots).

Fig. 5. Adaptive sampling of 500 scattered data points (dots).

points that are chosen by the algorithm, respectively. It is seen
that the overall design space is well resolved, and that the data
points are spread in an adaptive nonuniform way.

To validate the effectiveness of the sample distribution, the
parametrized frequency response is simulated for a constant
value of mm and a varying length . In terms of the
design space, this corresponds to the horizontal solid line (red in
online version) that is shown in Fig. 7. It is seen from this figure
that data points are distributed more densely if has a value
in between approximately 5 and 8 mm, as marked by the ver-
tical dashed lines (black). The reason becomes clear when Fig. 8
is considered. If is varied in between these values, the fre-
quency response contains a sharp resonance that moves toward
the lower frequencies as the length increases. For other values
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Fig. 6. Adaptive sampling of 1000 scattered data points (dots).

Fig. 7. Adaptive sampling of 2000 scattered data points (dots).

of , this resonance is located outside the frequency range of
interest, leading to a smoother frequency response.

As an additional test, the frequency response is simulated for
a constant value of mm and a varying width . This cor-
responds to the vertical solid line (red in online version) shown
in Fig. 7. Here, it is also found that the data points are distributed
more densely if has a value in between approximately 0.7 and
1.9 mm, as marked by the horizontal dashed lines (black). In be-
tween these values, the frequency response contains a sharp res-
onance that moves towards the lower frequencies as the width
increases, as shown in Fig. 9. For other values of , this reso-
nance is located outside the frequency range.

These results confirm that the dynamical regions of the de-
sign space are indeed sampled more densely than other regions
where the frequency response shows less variation.

Fig. 8. Magnitude parameterized �-parameter response for � � ����� mm.

Fig. 9. Magnitude parameterized �-parameter response for � � � mm.

B. Parametric Macromodeling

As a second example, the parametric modeling of the same
H-shaped antenna is considered. In this case, the parameter
ranges of the macromodel are set to mm and

mm , and the proposed algorithm is applied
to compute a representative set of 225 data points that are
scattered over the design space. The distribution of the data
points is shown in Fig. 10, and it is observed that data points are
sampled more densely in the upper right corner. This area cor-
responds to the region of the design space where the resonance
moves into the upper part of the frequency range from outside,
as the value of increases. A closer inspection of Figs. 7
and 10 reveals that a similar distribution of the data points is
chosen. As a comparison, the same number of data points are
simulated over a classical predefined sampling that does not
take the dynamical behavior of the response into account, e.g.,
a uniform 15 15 grid, as shown in Fig. 11.

To compute a parametric macromodel from the simulated
data samples, any kind of modeling technique can be applied.
In this case, the modeling approach in [20] is adopted because
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Fig. 10. Adaptive sampling of 225 scattered data points (dots).

Fig. 11. Uniform sampling of 225 grid-based data points (dots).

it can deal with scattered data and offers the possibility to en-
force stability and passivity by construction. First, the selected
data points of the adaptive algorithm are used to build a trian-
gulation of the design space. Some linear interpolation inside a
simplex is then performed to evaluate the model at intermediate
data points. It is noted that this interpolation scheme is local, and
therefore, highly sensitive to the distribution and the density of
the selected data points.

In order to assess the importance of the sampling, some para-
metric macromodels are computed based on the adaptive sam-
pling (shown in Fig. 10) and the uniform sampling (shown in
Fig. 11). The response of both parametric macromodels is eval-
uated for some arbitrary data points that are located in the most
dynamic region of the design space, and the response of these
models is compared to the simulation data. These data points are
marked by five red asterisks (in online version) in both figures.

Table I shows a comparison of the maximum absolute error
over all frequencies in each of these data points. It is clear
that the accuracy in the adaptive case is indeed better than the

TABLE I
COMPARISON OF MAXIMUM ABSOLUTE ERROR

Fig. 12. Magnitude adaptive macromodel and reference data for varying �.

accuracy in the uniform case. This follows from the fact that the
data points are sampled more densely in the regions where the
frequency response is varying more rapidly. As a final illustra-
tion, the response of the adaptive macromodel is compared to
the simulated frequency response in Fig. 12, and it shows that
an excellent agreement is observed.

VIII. DISCUSSION

In many practical cases, it is possible to characterize the en-
tire frequency response at a limited (or no) additional cost, when
compared to the simulation of a single frequency sample. In the
frequency domain, standard commercial simulation tools can
calculate the entire frequency sweep by simulating the system
at a limited number of frequencies (e.g., using AFS algorithms
[21]). Also in the time domain, an entire sweep of frequency
samples is calculated by applying a fast Fourier transform (FFT)
to the impulse response. Therefore, the adaptive sampling al-
gorithm treats frequency as a separate variable. Note, however,
that it is possible to include the frequency as a regular design pa-
rameter, by making some minor modifications to the algorithm,
particularly in (13).

IX. CONCLUSIONS

In order to limit the overall simulation and macromodeling
time, an efficient adaptive sampling algorithm is proposed
for parametric macromodeling of -parameter-based system
responses. It can easily be linked to any full-wave EM simu-
lator to select a representative set of scattered data points in
a sequential way. Note that the sampling algorithm does not
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depend on the multivariate macromodeling technique used. The
benefits of the approach are illustrated by an example.
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