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DC-Preserving Passivity Enforcement for
�-Parameter Based Macromodels
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Abstract—Rational approximation of frequency responses is im-
portant for the modeling and design of microwave systems. An
exact match of the dc value is crucial to ensure the accuracy and
reliability of circuit and system simulations. This paper presents
a novel approach to compute dc-compliant macromodels that are
both accurate and uniformly passive at the same time. Several ex-
amples illustrate the effectiveness of the approach.

Index Terms—DC compliant, frequency domain, macromod-
eling, passivity enforcement, system identification, vector fitting.

I. INTRODUCTION

V ECTOR fitting is a robust macromodeling algorithm to
compute a rational function approximation of frequency-

domain responses that are obtained from full-wave electromag-
netic simulations or high-frequency measurements [1]–[8]. Al-
though the resulting macromodels are stable and accurate, the
extrapolation of the model at lower frequencies may indicate an
incorrect dc value due to fitting errors. Nevertheless, an exact
match of the dc value is crucial because minor inaccuracies
may compromise the accuracy and reliability of all circuit and
system simulations [9]. It is possible to modify an incorrect dc
value by adding an external correction term to the model. Al-
though this offset can be effective to compensate small errors, it
introduces an unnecessary broadband deviation, which is often
undesired. An alternative approach is shown in [10], where an
exact correspondence of the dc value is obtained by modifying
the functional form of the rational approximation model. This
modification ensures that the model has an exact agreement of
the dc value, but it frequently occurs that the resulting model
is not asymptotically passive or uniformly passive. When com-
bined with nonlinear terminations, a nonpassive model may lead
to unstable simulations in an unpredictable way. Even though
standard passivity enforcement techniques can be applied from
literature, they do not preserve the dc value and often introduce
additional deviations that contribute further to the problem [11].
This paper introduces a reliable solution to the resolve these dif-
ficulties. A modified version of the vector-fitting algorithm is
proposed to compute dc-compliant macromodels, and a robust
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algorithm is proposed to enforce overall passivity while pre-
serving the dc value. Several examples illustrate the advantages
of this approach.

II. DC-COMPLIANT MACROMODELING

A. Model Representation

To compute a dc-compliant macromodel, the vector-fitting
algorithm is modified to calculate a proper macromodel with
a modified complex diagonalized state space representation

(1)

(2)

The transfer function of the model is then defined as

(3)

The advantage of this representation is that the model response
at dc is exactly equal to the elements of the feedthrough matrix

. Thus, by setting the elements on the th row and th column
of equal to the correct dc value of the corresponding
scattering element , a perfect agreement is guaranteed [10].
Each element of (3) can be recasted into a partial frac-
tion expansion, assuming that each element has a distinct set of
coefficients and common poles

(4)

It is also evident from (4) that , and thus a
dc-compliant macromodel is obtained. A reliable procedure to
calculate the remaining model coefficients and is de-
scribed in Section II-B. It is largely based on a modified proce-
dure of the standard vector-fitting routine [10].

B. Model Identification

To identify the coefficients and in (4), the transfer
function of scattering element is defined as the ratio of a
numerator and a common denominator . Both ex-
pressions are expanded as a linear combination of rational basis
functions that are based on a common set of poles . These
poles are initially prescribed, and they are selected according to
a heuristical scheme in [1]. The first step of the identification
process consists of finding the optimal values of the coefficients
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and such that the least squares distance between the ra-
tional model and data samples is minimized

(5)

The calculation of coefficients and leads to a nonlinear
identification problem that can be hard to solve using standard
optimization techniques. Therefore, a linear approximation of
the problem is found by minimizing Levi’s cost function [12]

(6)

The trivial null solution in (6) is avoided by setting the coeffi-
cient . This choice ensures that in (5) equals the
exact dc value, whereas approaches unity at the low fre-
quencies. This leads to the following expression:

(7)

Once the coefficients and are solved, it is clear that (5)
can be simplified by cancelling out the prescribed poles . It
follows that the relocated poles of the transfer
function are, in fact, the zeros of . These zeros are easily
calculated by solving an eigenvalue problem that is based on
the minimal state space realization of .
The easiest way to construct this realization is to reformulate

from (5) into the standard partial fraction form such that

(8)

provided that and . This way,
the state space realization can be constructed using the same
procedure as in [1, App. B]. The zeros of are directly found
by solving the following eigenvalue problem:

(9)

The prescribed poles in (5) are replaced by the relocated
poles , and this procedure is iteratively repeated until they
are converged to some quasi-optimal position [1]. Stability of
the model is ensured by a simple pole-flipping scheme that
inverts the sign of unstable poles during the iterations. It is
shown in [13] that this pole relocation process is equivalent
to the Sanathanan–Koerner iteration using implicit weighting.
Once the relocated poles are converged, the corresponding
coefficients of the model are solved as a linear problem

(10)

where the coefficient is equal to the exact dc value.

III. PASSIVITY CONDITIONS

Although the calculated macromodels are dc compliant, they
are not guaranteed passive by construction. The exact definition
of passivity for stable -parameter-based macromodels in the
frequency domain stipulates that the singular values of the
scattering matrix are unitary bounded [14]

(11)

which leads to the following equivalent expression:

(12)

In order to apply some algebraic passivity tests to the model, the
state space realization (1) and (2) is reformulated as follows:

(13)

(14)

Real matrices , , , and are obtained by applying a sim-
ilar transformation as (8) to each element in (4). The
passivity can then easily be verified algebraically by computing
the eigenvalues of an associated Hamiltonian matrix [15]

(15)

where and . If is an imag-
inary eigenvalue of , then the corresponding frequency
may denote the crossover between a passive and a nonpassive
frequency band [16]. By computing the slopes of the singular
value curves at the purely imaginary eigenvalues, it is possible
to pinpoint the exact boundaries of a passivity violation. If all the
eigenvalues of have a nonvanishing real part, then the system
is passive. Theoretical proofs about this procedure are reported
in [15]. In the case of reciprocal systems, a smaller passivity test
matrix can be derived that is half the size of the Hamiltonian ma-
trix [17].

IV. ASYMPTOTIC PASSIVITY ENFORCEMENT

Asymptotic passivity of the model requires that the singular
values of the scattering matrix are unitary bounded
for . This can easily be verified by computing the sin-
gular value decomposition of the matrix such that

(16)

where is a positive real-valued diagonal matrix that contains
the singular values, and and are unitary matrices. If the
model is not asymptotically passive, then one (or several) of
the singular values in will exceed unity. To compensate this
violation, a new set of violation parameters is constructed

(17)

with

(18)
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where and are square diagonal matrices

(19)

The value of the parameter is chosen exactly equal to 1. To
make the model asymptotically passive, a new set of residues

is computed by fitting using the same set of poles
that were used in the original macromodel (1). This leads to

the following underdetermined problem:

(20)

A combination of two terms is formed to preserve complex
conjugacy of the residues corresponding to a complex pole
pair. While solving the equations, one can impose addi-
tional nonlinear constraints that minimize the deviation to the
input–output port response of the macromodel (see [18] for
details). The violations are then removed by subtracting
from the residue matrix , leading to a new set of residues

(21)

It is noted that the matrix in (2) remains unaffected since this
matrix contains the dc values that should be preserved.

V. UNIFORM PASSIVITY ENFORCEMENT

If algebraic passivity tests indicate that the model is nonpas-
sive, then the passivity enforcement algorithm [11] is modified
to compensate the violation without affecting the dc value. The
residues in the output matrix (for ) are itera-
tively corrected by a simple least squares fitting procedure until
all violations are removed. In the first iteration step of the
algorithm, in (21).

A. Nonpassive Residuals of Scattering Matrix

First, a dense set of frequencies is determined from
dc up to about 20% above the highest relevant frequency.
This highest relevant frequency is the maximum of the highest
crossing from a nonpassive to a passive region on one hand and
the maximum frequency of interest on the other hand. For each
frequency in the set , a singular value decomposition
of the scattering matrix is performed as follows:

(22)

where is a positive real-valued diagonal matrix that contains
the singular values, and and are unitary matrices. The in-
version of in (22) is computationally fast because
it is a complex diagonal matrix. It is clear that one (or several)
of the singular values in will exceed unity in the areas where
the model is nonpassive. Therefore, a new set of violation pa-
rameters is constructed as follows:

(23)

Fig. 1. Shunt capacitor: schematic.

where , , and are defined as in (18) and (19). In this
case, the value of is a predefined tolerance parameter that is
chosen, in practice, slightly smaller than 1 (such as, e.g., 0.999).

B. Adjustments of Residues

In order to make the initial state space model passive, a new
set of residues is computed by fitting the violation param-
eters over the frequency sweep using the same set of
poles that were used in the original model (1)

(24)

It is noted that the solution of (24) is found by solving an overde-
termined least squares matrix. The computational cost of this
residue identification step is very small because it does not re-
quire any pole relocations. The calculated residues are
then subtracted from the previous residue matrix in order to
suppress the passivity violations; hence,

(25)

This process is repeated until all violations are compensated.

VI. EXAMPLES

A. Shunt Capacitor

As a first example, the algorithm is demonstrated by com-
puting a passive dc-compliant macromodel of a one-port shunt
decoupling capacitor. The schematic of a simple model with
representative behavior (see Fig. 1) is used to generate the -pa-
rameters so the reader can easily verify the computations. The
data samples are computed from dc up to 4 GHz, as shown in
Fig. 2. Since M and , it is
clear that the -parameter at dc equals

(26)

The modified vector-fitting algorithm in Section II-B is used
to compute an exact dc-compliant macromodel with two poles.
Unfortunately, the model is not asymptotically passive because

(27)

In order to make the macromodel asymptotically passive, the
procedure in Section IV is applied to compute a small correction
to the residues in (2) without modifying the dc values in .
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Fig. 2. Shunt capacitor: magnitude of �-parameters.

Fig. 3. Shunt capacitor: deviation passive dc-compliant macromodel.

This correction offsets the passivity violation in such a way that
becomes exactly equal to 1.

Although asymptotic passivity is enforced, it is not guaran-
teed that the macromodel is uniformly passive. Uniform pas-
sivity can be verified by checking the eigenvalues of the Hamil-
tonian matrix (15). However, since is now exactly equal to 1,
this test cannot be applied because both and become sin-
gular. To resolve this problem, a modified passivity test (based
on the realization of the reciprocal system) is used, as in [19]. It
is found that the conditions for uniform passivity are satisfied,
and no further compensations are needed.

Fig. 3 shows the deviation of the passive dc-compliant macro-
model, and it turns out that the maximum absolute deviation
caused by asymptotic passivity enforcement is approximately

178 dB. It is also noted that there is no deviation at dc be-
cause the proposed macromodeling and passivity enforcement
procedure preserves the exact dc values.

Fig. 4. Balun: singular value curves of passive and nonpassive model.

Fig. 5. Balun: zoom of Fig. 4 at lower frequencies from dc to 1 GHz.

B. Balun Transformer

As a second example, the procedure is applied to compute
a passive dc-compliant macromodel of a five-port planar mi-
crowave balun transformer. The -parameters of the component
are simulated with ADS Momentum [20] over the frequency
range of interest from dc up to 10 GHz. The modified vector-fit-
ting procedure in Section II-B is used to compute an accurate
ten-pole macromodel with an exact match of the dc value. Ac-
curate modeling of the dc value is often critical to capture the
late-time (steady state) response of the system [21]. It is verified
by checking the singular values of that the model is asymptot-
ically passive; however, a Hamiltonian passivity check indicates
that the model is not uniformly passive. To visualize possible
passivity violations, the singular value curves of the scattering
matrix are shown in Fig. 4. A zoom of Fig. 4 near dc is shown in
Fig. 5, and it is seen that a small passivity violation is detected.
The iterative passivity compensation procedure in Section V is
applied to remove the violation, and a passive macromodel is
obtained in ten iterations. It is seen from Fig. 6 that the size of
the maximum violation decreases monotonically in each itera-
tion step, and convergence to a passive macromodel is obtained.
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Fig. 6. Balun: maximum singular value in each iteration step.

Fig. 7. Balun: zoom of Fig. 4 at lower frequencies from dc to 100 MHz.

Fig. 7 shows a more detailed zoom of the singular value curves,
and a closer inspection reveals that the passivity compensation
algorithm preserves an exact agreement of the singular values
at dc (marked by black dots), as desired. Fig. 8 shows the mag-
nitude of the -parameter response of the passive dc-compliant
macromodel, and it turns out that the maximum absolute devia-
tion is bounded by approximately 80 dB over the frequency
range of interest, which is a highly accurate result. It is also
noted from Fig. 8 that the deviation at dc is exactly equal to
0 since the passivity enforcement procedure ensures that the dc
values remain unaltered.

As a comparison, the standard vector-fitting technique from
[1] is used to compute a similar ten-pole macromodel. The fre-
quency sample at is included in the fitting process; how-
ever, dc compliance (as described in this paper) is not enforced.
Table I lists the exact dc values and the dc values of the stan-
dard vector-fitting model, and it is seen that a nonnegligible de-
viation is introduced. Fig. 9 shows the singular value curves of
the model and confirms that the singular values of the exact dc
solution (marked by black dots) are indeed missed, even before
any kind of passivity enforcement is applied. Such a deviation is

Fig. 8. Balun: singular values passive dc-compliant macromodel and deviation.

TABLE I
DC VALUES—UPPER TRIANGULAR ELEMENTS OF ����

Fig. 9. Balun: singular values standard VF macromodel (non dc compliant).

undesired, as it may lead to wrong bias currents at dc. The new
dc-compliant macromodeling procedure described in this paper
completely resolves this problem, as it enforces an exact match
of the dc value and preserves the dc value of the macromodel
during the passivity enforcement.
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VII. CONCLUSIONS

The calculation of macromodels with an exact match of the dc
values are important since minor inaccuracies can lead to unre-
liable circuit and system simulations. A robust approach is de-
scribed to compute macromodels that are dc compliant, and a
reliable passivity enforcement procedure is proposed to ensure
asymptotic and uniform passivity of the model. Several exam-
ples illustrate that this method yields accurate results.
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