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Transfer function identification from phase response data
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Abstract

This paper introduces an improved procedure for the identification of a transfer function from phase angle data with pre-
scribed frequency variation. It is shown how a transfer function can be identified from phase response data samples, by fitting
a normalized function with constant magnitude using the vector fitting algorithm. The presented approach is numerically
robust and leads to more accurate results than conventional approaches.
� 2009 Elsevier GmbH. All rights reserved.
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1. Introduction

The synthesis of networks having prescribed phase char-
acteristics is used for the design of feedback amplifier net-
works, symmetrical filter networks [1,2] and the design of
low-pass filters with linear phase [3]. It is known from lit-
erature [4] that a transfer function can be determined from
phase angle data by fitting the response of a tangent func-
tion using a polynomial-based Sanathanan–Koerner (SK)
iteration. As shown in this paper, the reliability of this ap-
proach is sensitive to the dynamic behavior of the tangent
function, since it may contain a lot of sharp spikes which
are difficult to approximate. To avoid this problem, a novel
approach is presented that is based on least-squares fitting
of a proposed normalized function with constant magnitude
by vector fitting (VF) [5–8]. Numerical examples illustrate
the robustness of the proposed approach. It is also noted
that the proposed method is computationally efficient, since
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it avoids the need for semidefinite programming which has
been reported in more recent work [3].

2. Transfer function identification via tangent
approximation

The problem of synthesizing a finite two-terminal network
whose phase angle is a prescribed function of frequency
was theoretically solved by Adler [2]. In the following, such
result is reviewed.

Let us consider the following transfer function:

H (s) = a0 + a1s + a2s2 + · · · + amsm

b0 + b1s + b2s2 + · · · + bnsn
= P(s)

Q(s)
, (1)

where m �n and the model coefficients {ai }, {bi } are real.
Setting s = j� in (1), the phase angle �(�) of H ( j�) =
|H ( j�)| exp( j�(�)) is then given by

tan �(�) =
1

j
Ho(s)

He(s)

∣∣∣∣∣∣∣∣
s= j�

, (2)
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where He(s) and Ho(s) are, respectively, the even and odd
part of H (s):

He(s) = 1

2
[H (s) + H (−s)] =

1
2 [P(s)Q(−s) + P(−s)Q(s)]

Q(s)Q(−s)

≡ M(s)

Q(s)Q(−s)
, (3)

Ho(s) = 1

2
[H (s) − H (−s)] =

1
2 [P(s)Q(−s) − P(−s)Q(s)]

Q(s)Q(−s)

≡ N (s)

Q(s)Q(−s)
. (4)

Combining numerators of (3) and (4) yields

M(s) + N (s) = P(s)Q(−s), (5)

which indicates that the zeros of the polynomial M(s)+N (s)
are both the zeros of H (s) and its poles having opposite
sign. Hence, the practical problem of determining poles and
zeros of a transfer function H (s), whose phase angle in
the frequency domain �(�) = �H ( j�) approximates a set
of phase response data {�k, �

′(�k)}
k=1.. .K , can be tackled

computing the coefficients {ci }, {di } of the following rational
approximation:

T (�k) = tan �(�k)

�k
= N ( j�k)

j�k M( j�k)

= c0 + c1�2
k + · · · + cp�

2p
k

1 + d1�2
k + · · · + dp�

2p
k

≈ tan �′(�k)

�k
, (6)

where 2p + 1 = m + n, and afterwards the roots of M(s) +
N (s)=0. Several transfer functions can be constructed which
approximate a given phase response, depending on how the
zeros of M(s)+N (s) are assigned to P(s) and Q(−s). If it is
required to obtain a minimum phase shift function, then all
poles and zeros must be located within the left-half plane. In
that case, the roots of M(s)+N (s)=0, belonging to the right-
half plane must be assigned to Q(−s), whereas the roots
belonging to the left-half plane must be assigned to P(s).
Once the roots of P(s) and Q(s) are known, the transfer
function is completely determined except for an arbitrary
constant multiplier which has no influence upon the phase
angle.

Adler used rational interpolation in [2], which means that
the left-hand side exactly equals the left-hand side in (6).
Later on, Jong [4] introduced the rational approximation
in (6) using a least-squares approach based on polynomial-
based SK algorithm [6]. However, the rational interpola-
tion/approximation (6) is numerically difficult to achieve
because of the large peaks of the tangent function [2]. More-
over, since a dense sample distribution is required in order
to describe accurately a peak, a non-uniform sample distri-
bution is advisable to avoid oversampling in smooth regions
of the tangent function [2].

In Section 3, a new approach, numerically more robust
than tangent approximation, is proposed. Such approach has

been validated on several numerical examples. Due to space
limitation, only two examples are shown in the paper (Sec-
tions 4 and 5).

Finally, it is worth to remark that, when phase angle data
samples come from a physically realizable system (i.e. a sys-
tem where m �n), the number of right-half plane zeros of
M(s) + N (s) cannot be less than half of the total number of
zeros. On the other hand, provided that the approximation
(6) is sufficiently accurate, a number of right-half plane ze-
ros less than (m + n)/2 indicates that the given phase angle
data samples cannot be approximated with any physically
realizable (stable) systems of order at most m + n. Further-
more, the polynomial M(s) + N (s) never owns any imag-
inary roots, because these cancel out in the ratio N/M . A
comprehensive discussion is omitted in this paper; the inter-
ested reader can refer to [1].

3. Transfer function identification via the new
proposed approach

The identification of the transfer function H (s) whose
phase angle in the frequency domain �(�) = �H ( j�) ap-
proximates a set of phase response data {�k, �

′(�k)}
k=1.. .K ,

can be achieved by avoiding the rational approximation (6).
Let us define the function:

�(s) = M(s) − N (s)

M(s) + N (s)
(7)

whose poles are the roots of P(s)Q(−s), see Eq. (5). There-
fore, the poles and zeros of transfer function H (s) can be
identified by calculating the poles of �. Such calculation is
pursued in the frequency domain (s = j�). It results from
(2) to (4):

�( j�) = 1 − j tan �(�)

1 + j tan �(�)
, (8)

hence the VF macromodeling algorithm [5] is applied to
solve the following pole identification problem (where the
unknowns are {pi }):

�( j�k) = r0 +
n+m∑

i=1

ri

j�k − pi
≈ �′( j�k)

= 1 − j tan �′(�k)

1 + j tan �′(�k)
. (9)

The VF algorithm solves a rational approximation prob-
lem in two steps, respectively, named pole identification
(which gives the {pi }) and residue identification (which gives
the {ri }). The pole identification solely involves the solution
of a linear system of equations and of an associated eigen-
value problem. The residue identification consists only of a
linear system of equations. Both systems of equations are
overdetermined when the number of frequency samples is
greater than the number of model parameters. In such a case
the solution is pursued in the least-squares sense. The reader
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is referred to [5–8] for further details. Since {pi } contains
all required information, the identification of residues {ri }
can be skipped in (9).

It is worth to note that the function �( j�) is much
smoother than the tangent, since it has a constant magni-
tude. Hence, the computation of the rational approximation
(9) results in accurate poles and zeros based on a uniform
sample distribution. At the same time, it is well known from
[7] that VF algorithm is numerically more robust than the
polynomial SK iteration.

4. Example 1: comparison between tangent
rational approximation approach and the
proposed approach

The proposed method has been applied to identify the
transfer function of a RLC filter, whose phase angle ap-
proximates the phase angle of the filter provided below (for
s = j�):

Z ′(s) = − 3000

s + 4500
− 83000

s + 41000
− 5 − j7000

s + 100 − j5000

− 5 + j7000

s + 100 + j5000
− 20 − j18000

s + 120 − j15000

− 20 + j18000

s + 120 + j15000
+ 6000 + j45000

s + 3000 − j35000

+ 6000 − j45000

s + 3000 + j35000
+ 40 + j60000

s + 200 − j45000

+ 40 − j60000

s + 200 + j45000
+ 90 + j10000

s + 1500 − j45000

+ 90 − j10000

s + 1500 + j45000
+ 50000 + j80000

s + 500 − j70000

+ 50000 − j80000

s + 500 + j70000
+ 1000 + j45000

s + 1000 − j73000

+ 1000 − j45000

s + 1000 + j73000
− 5000 − j92000

s + 2000 − j90000

− 5000 + j92000

s + 2000 + j90000
+ 0.2. (10)

The corresponding frequency domain phase response data
�Z ′( j�k) have been evaluated over K = 200 angular fre-
quency points {�k}k=1.. .K , uniformly spaced throughout the
interval 10–100000rad/s. The phase angle �Z ′( j�k) is con-
taminated by Gaussian noise n(�k), with mean � = 0 and
standard deviation � = 0.001:

�′(�k) = �Z ′( j�k) + n(�k). (11)

First, as earlier proposed in [1,4], we tried to calculate
the rational approximation of the tangent function (6) with
p=14. It is found that the sharp spikes of tan �′(�k)/�k are
difficult to approximate with a decent accuracy, as shown
in Fig. 1. Therefore, the newly proposed method is applied
to identify the function �( j�) (9) with m + n = 28. Fig. 2
shows that an excellent correspondence is obtained between

Fig. 1. Example 1: rational approximation T (�) of (6), using 10
vector fitting iterations.

Fig. 2. Example 1: proposed approach, direct rational approxima-
tion of �′ (9) (using 10 vector fitting iterations) compared with
�T (12).

the phase angle of the reference function �′( j�) and the
direct rational approximation �( j�) (proposed approach).
Although not required by the procedure described in Section
2, a rational approximation �T ( j�) of �′( j�) is also com-
puted by exploiting the rational approximation T (�) (6):

�T ( j�k) = 1 − j�k T (�k)

1 + j�k T (�k)
≈ �′( j�k)

= 1 − j tan �′(�k)

1 + j tan �′(�k)
. (12)

This allows a direct comparison between the proposed ap-
proach and tangent approximation. Fig. 2 shows that �T ( j�)
is less accurate than �( j�). In particular, the inaccuracy
found in the approximation T (�) around 70krad/s (see
Fig. 1) is clearly reflected in �T ( j�).
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Fig. 3. Example 1: phase angle of transfer function (10) com-
pared to those of two approximations obtained with the proposed
approach and the tangent approximation approach.

A transfer function Z (s)=P(s)/Q(s) such that �Z ( j�) ≈
�Z ′( j�) can now easily be reconstructed, by assigning the
poles of � to P(s) and Q(−s). With both tangent approx-
imation and proposed approach, the same procedure is un-
dertaken. The first 15 poles of � (proposed approach) and
zeros of M(s) + N (s) (tangent approximation) with positive
real part are assigned to Q(−s), the others are assigned to
P(s). Different assignments would lead to different func-
tions Z (s) which all have the same phase angle, but differ for
the magnitude response. Since the poles of � are identified
with a very high accuracy, an excellent agreement between
the phase angle of Z ′( j�) and the phase angle of Z ( j�) can
be observed in Fig. 3. On the other hand, since the tangent
approximation (6) is inaccurate (Figs. 1 and 2) the agreement
between the final approximation ZT ( j�) obtained with (6)
and the reference function Z ′( j�) is inaccurate as well.

5. Example 2: synthesis problem of a linear
phase low-pass filter

In this section the proposed approach is used to construct
a low-pass filter with a linear phase for low frequencies. The
filter is then compared with two standard Bessel filters.

Low-pass filters with linear phase are desired because
they do not distort the signal, but only introduce a delay.

Since finite impulse response (FIR) filters can be easily con-
structed in the discrete time, it was proposed in [3] to derive
a continuous time filter by fitting a rational transfer function
Ga(s) to frequency samples G( j�k) generated by a discrete
time linear phase FIR filter. The same procedure is followed

Fig. 4. Example 2: phase angle of a linear phase filter Ga identified
with proposed approach, compared to a couple of standard Bessel
filters Gb1 and Gb2.

here, but the new method introduced in this paper is applied
instead of the one presented in [3]. Compared to [3], the
new proposed approach is much simpler and computation-
ally less expensive. It only requires the solution of a linear
system of equations and of an eigenvalue problem (VF pole
identification), whereas [3] formulates a semidefinite pro-
gramming problem.

Let us consider the discrete time linear phase FIR filter:

G( j�) =
5∑

l=0

cle
−l� j�, (13)

with cut-off frequency 0.5 rad/s and {�k}={0, 0.01, . . . , 0.7}.
The coefficients {cl} can be obtained by the MATLAB
command fir1(5,0.5). The transfer function Ga(s) of
a fifth-order continuous time filter will be identified from
�G( j�k). First, the samples {�′( j�k)} (9) are evaluated
with �′(�k) = �G( j�k). Then, the rational approximation
(9) is computed with n + m = 5. Since all the poles {pi }
of �(s) lie in the right-half plane, they can all be assigned
to Q(−s) (m = 0, n = 5) resulting in a stable system. This
is indeed the best solution, since it results in a filter with
the strongest attenuation possible in its stop-band. The final
result is

Ga(s) = 0.0155

(s+0.2428)(s+0.2313+0.3161 j)(s+0.2313−0.3161 j)(s+0.1814+0.6182 j)(s+0.1814−0.6182 j)
. (14)

Fig. 4 shows that the phase angle of Ga( j�) matches
the phase angle of G( j�) up to 0.7 rad/s. Fig. 5 shows that
the cut-off frequency is close to 0.5 rad/s. Like in [3], we
have compared the filter Ga(s) with two different fifth-
order Bessel filters, Gb1 and Gb2, respectively, obtained
by the MATLAB command besself (5,0.5) and
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Fig. 5. Example 2: magnitude of a linear phase filter Ga identified
with proposed approach, compared to a couple of standard Bessel
filters Gb1 and Gb2.

besself (5,0.7). The filter Gb1( j�) matches the phase
angle of G( j�) and Ga( j�) up to 0.5 rad/s, but has a lower
cut-off frequency. On the other hand, the filter Gb2( j�),
exhibits a linear phase angle up to 0.7 rad/s, but with less
phase lag than G( j�) and Ga( j�) and with a higher cut-
off frequency. Hence, we conclude that Ga is not a standard
Bessel filter.

6. Conclusions

A new procedure for the transfer function identification
from phase response data is presented. The VF technique
is used to approximate a normalized function of the phase
angle, allowing a straightforward and accurate identification
of poles and zeros of the transfer function. The effectiveness
of this approach has been shown on a practical filter synthesis
problem.
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