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Abstract

Vector Fitting is an effective technique for rational approximation of LTI systems. It has been extended to fit the magnitude of
the transfer function in absence of phase data. In this paper, magnitude Vector Fitting is modified to work on inequalities which the
magnitude of the transfer function has to satisfy, instead of least squares approximation. The new interval version of the magnitude
Vector Fitting is proved valuable for multiband filter design and the fitting of noisy magnitude spectra.
© 2009 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Vector Fitting is a robust approach for the identification of transfer functions from measured or calculated fre-
quency responses [13,14]. Over the years, several extensions and improvements of this methodology have emerged
[4,12,6,10,11,5,15]. In the case where phase data are missing, the magnitude Vector Fitting [7–9] can be applied to
model only the squared magnitude of the transfer function.

Paper [17] introduces a variant of rational interpolation, which tries to fit interval data instead of plain function
values. By interval data fitting is meant the process of finding a function r(s) which satisfies inequalities

ai ≤ r(si) ≤ bi (1)

with i = 1, . . . , n. For each data point si, an interval [ai, bi] is provided. Paper [17] focused on the case where r(s) was
a rational function, while others [16] have discussed the problem in case of polynomial interpolation.

This paper adapts the magnitude Vector Fitting methodology to work on interval data. It takes the Vector Fitting
approximant and constructs linear inequalities which make the approximant’s value lie within certain bounds at given
data points. This methodology searches for a function H̃(s), such that the squared magnitude of H̃ lies inside certain
intervals for all data points si

ai ≤ |H̃(si)|2 ≤ bi (2)
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Section 2 will repeat the fundamentals of the magnitude Vector Fitting methodology, while Section 3 introduces
some modifications to the algorithm to accommodate interval data. Sections 4 and 5 solve the systems of inequalities
which arose in the other sections. Finally, some practical examples and applications are shown in Sections 6 and 7 to
demonstrate the new methodology.

2. Magnitude Vector Fitting

Let the proper real-rational transfer function H(s) (with s = j ω) be defined by its poles pj , zeros zj and gain k as
follows

H(s) = k

M∏
j=1

(s − zj)

M∏
j=1

(s − pj)

(3)

then its squared magnitude is given by

|H(s)|2 = H(s) H�(s) = |k|2

M∏
j=1

(s − zj) (−s − z�
j )

M∏
j=1

(s − pj) (−s − p�
j )

= |k|2

M∏
j=1

(s − zj) (s + z�
j )

M∏
j=1

(s − pj) (s + p�
j )

(4)

From the transfer function H(s), being a quotient of two polynomials with real coefficients, it follows that both
numerator and denominator of |H(s)|2 = H(s)H(−s) are real and even polynomials in s. Hence, if x is a pole (or zero),
then −x, x� and −x� are also poles (or zeros).

Following the calculations in [7,8], (4) can also be written in a modified pole/residue form, with poles and residues
occurring in conjugate pairs.

|H(s)|2 =
M∑

j=1

rj

(
1

s − pj

− 1

s + pj

)
+ d (5)

Magnitude Vector Fitting proceeds by modeling both |(Hσ)(s)|2 and |σ(s)|2 as defined in [13] both at the same time,
using the same set of basis functions

f0(s) = 1 (6)

and

fj(s) = 1

s − pj

− 1

s + pj

j = 1, . . . , M (7)

resulting in the following equations

⎛
⎝ |σ(s)|2

|(Hσ)(s)|2

⎞
⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎝

k0 +
M∑

j=1

kjfj(s)

c0 +
M∑

j=1

cjfj(s)

⎞
⎟⎟⎟⎟⎟⎟⎠

(8)

Note that this is quite similar to regular Vector Fitting [13], where one fits σ(s) and (Hσ)(s) at the same time.
Proceeding as with the standard Vector Fitting methodology, one evaluates these equations in all data points sk,

multiplies the first equation of (8) by |H(sk)|2 and observes that the two expressions should be equal in all sample
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points. This results in a least squares system in the unknowns kj and cj . In order to avoid the all-zero solution, one
either fixes one of the coefficients at 1, or adds a “relaxation” condition as an additional matrix equation, see [12]

N∑
k=1

⎛
⎝ M∑

j=1

kjfj(sk) + k0

⎞
⎠ = N (9)

The reason for this is that as the poles become close to the real poles of the system, |σ(s)|2 approaches one, and Eq.
(9) is just the sum of N ones.

The above procedure does not guarantee that the residues (rj and rk) belonging to complex conjugate poles (pj and
pk) are complex conjugates, which is required whenH(s) is a real-rational transfer function. Complex conjugate residues
can be enforced by replacing fj(s) and fk(s) by gj(s) := fj(s) + fk(s) and gk(s) := j

(
fj(s) − fk(s)

)
respectively,

whenever pj and pk are complex conjugate poles. For real poles pl one keeps gl(s) = fl(s). Doing so will result in a
real system of linear equations instead of a complex one. Furthermore, the residues (coefficients) of the original fj(s)
and fk(s) can be found as cj ± jck, with cj and ck the (real) coefficients for gj(s) and gk(s), respectively.

Next, one needs to find the zeros of |σ|2, because they can be identified as the true poles of the fitted H(s), just like
in regular Vector Fitting. Once these zeros have been found, magnitude Vector Fitting proceeds in an iterative fashion
by replacing the poles pj with the new poles (i.e. the zeros of |σ(s)|2) and continuing iteratively.

In order to find the zeros of |σ|2 (i.e. the new poles for the next iteration), one can use the same technique as in
standard Vector Fitting. Rewriting (7) as

fj(s) = 2pj

s2 − p2
j

(10)

one can reformulate |σ(s)|2 as

|σ(s)|2 =
M∑

j=1

r̃j

s2 − qj

+ k0 (11)

with qj = p2
j and r̃j = 2pjkj . Note that this is a plain pole/residue form in the variable s2. A number of methods are

known for finding the zeros of a pole/residue form. In magnitude Vector Fitting, it is customary to compute the zeros
as the eigenvalues of A − BD−1 CT, where A is the diagonal matrix containing the poles, B is a column matrix of ones,
C is the column matrix containing the residues r̃j and D is equal to the scalar k0.

After a few iterations, the poles have settled in their final positions. What remains is to get a final approximation of
|H(s)|2. This step is the magnitude Vector Fitting analogy of the residue identification step in standard Vector Fitting.
This approximation of |H(s)|2 can be found by solving the following system of linear equations in the least squares
sense

|H(s)|2 = c0 +
M∑

j=1

cjfj(s) (12)

where the pj are the poles found in the last iteration. Again, the residues cj will be complex conjugate if one solves the
modified system using the gj’s instead. Discarding zeros and poles having positive real parts gives a minimum phase
shift function whose magnitude matches the magnitude of |H(s)|, see [9].

3. Interval data

Some authors [16,17] have applied fitting techniques to interval data instead of regular data. In the Vector Fitting
context, suppose one has samples at frequencies s1, . . ., sn with observed intervals [Ȟ1, Ĥ1], . . ., [Ȟn, Ĥn]. Instead
of trying to fit |H(s)|2 in a least squares sense, one tries to find a function H such that

Ȟk ≤ |H(sk)|2 ≤ Ĥk (13)

(the upper and lower bounds are put on the squared magnitude of H(sk)).
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If these bounds are not too stringent, it is possible to use optimization algorithms to find a solution for H. This
section describes how magnitude Vector Fitting can be applied in the context of interval data.

When faced with interval data, one cannot proceed from Eq. (8) by multiplying |σ(s)|2 by |H(s)|2 (like with
traditional Vector Fitting) as there is no exact data available. On the other hand, one can get a set of inequalities, using
(13) ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

|σ(sk)H(sk)|2 ≤ Ĥk

⎛
⎝ M∑

j=0

kjgj(sk)

⎞
⎠

|σ(sk)H(sk)|2 ≥ Ȟk

⎛
⎝ M∑

j=0

kjgj(sk)

⎞
⎠

(14)

The left-hand side of these inequalities is still equal to the other equation from (8). Therefore, one can rewrite (14)
as matrix inequalities

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...
...

...
...

Ĥk Ĥkg1(sk) . . . ĤkgM(sk) −1 −g1(sk) . . . −gM(sk)

...
...

...
...

...
...

−Ȟk −Ȟkg1(sk) . . . −ȞkgM(sk) 1 g1(sk) . . . gM(sk)

...
...

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k0

k1

...

kM

c0

c1

...

cM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥ 0 (15)

where “≥ 0” means that every component of the vector has to be greater than 0. If one writes the matrix on the left-hand
side as U, and the vector of unknowns as λ, one obtains the general problem formulation Uλ ≥ 0. Section 4 explains
how to deal with this problem.

The second problem that needs to be solved when using magnitude Vector Fitting for interval data, is that of the
residue identification. In that case, one has to solve the following system of linear inequalities

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
...

...

−1 −g1(sk) . . . −gM(sk)

...
...

...

1 g1(sk) . . . gM(sk)

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c0

c1

...

cM

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

≥

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−Ĥ1

...

−ĤN

Ȟ1

...

ȞN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16)

where the inequality means component-wise inequality. This problem is of the form Uλ ≥ V and will be solved in
Section 5.
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4. The pole identification problem

The pole identification problem is similar to the one solved by [17], involving rational interpolation on interval
data. Their technique is also applicable in the magnitude Vector Fitting context, and more specifically to the pole
identification problem

Uλ ≥ 0 (17)

Observe that the vectors λ satisfying this equation all lie in a polyhedral cone, i.e. a cone bounded by hyperplanes
through the origin, namely

ujλ ≥ 0 (18)

(with uj the jth row of U). Furthermore, if λ is a solution, then αλ is an equivalent solution for each positive scalar α.
Therefore, solutions are actually rays

{αλ|α > 0} (19)

The optimal solution discussed in [17] is the ray representing the so-called Chebyshev direction. It is the ray which
lies the “furthest away” from the faces of the polyhedral cone. This last problem is proven to be equivalent to finding
the point λ closest to the origin, satisfying the linear inequalities ujλ ≥ 0 by a margin δ, so that

uj

||uj||λ ≥ δ (20)

or

ujλ − δ||uj|| ≥ 0 (21)

The problem at hand is in fact a quadratic programming problem:

argminλ ∈R2M+2 ||λ||2 (22)

such that

ujλ − δ||uj|| ≥ 0 (23)

where the square of the norm is chosen as objective function, as it is quadratic in the components of λ. The example
below uses the MATLAB quadprog method to solve this problem.

Alternatively, the problem can be seen as a convex optimization problem [3], that is, a problem of the form

argminλ ∈Rd h0(λ) (24)

such that

hj(λ) ≥ 0 (25)

for convex functions h0 and hj . Note that the squared norm ||λ2|| is convex, and the linear functions hj are convex.

5. The residue identification problem

The residue identification problem is slightly different from the pole identification, as it consists of inequalities of
the form

ujλ ≥ vj (26)

where uj is the jth row of U, and vj is the jth component of V. These inequalities represent (hyper) half-planes in Rd .
The intersection of such a set of half-planes is a multidimensional polyhedron, and all λ satisfying (26) are interior
or boundary points of this polyhedron. A natural optimal solution of such a system of inequalities would be the point
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furthest away from the boundaries (the so-called Chebyshev center [3]). For any point in the interior of the polyhedron,
the distance to the jth boundary is given by:

rj := uj

||uj||λ − vj

||uj|| (27)

Therefore, the optimization problem to find the Chebyshev center is identified as

argmaxr≥0 r (28)

such that

ujλ + −r||uj||vj (29)

Again, two alternate solution methods are at hand. First, the problem can be rewritten as a linear programming
problem

argmaxμ ∈Rd+1 (1, 0, . . . , 0) μ (30)

such that(
1 0

||uj|| U

)
μ ≥

(
0

V

)
(31)

with μ = (r λT)
T
. Second, the problem can also be treated as a convex optimization problem (see [3] Section 4.3.1).

As two other alternatives, the methods of Section 4 can be used, too. Add an extra unknown ξ and solve

−ξV + Uλ ≥ 0 (32)

for λ and ξ. The implementation for the example uses the MATLAB linprog method to solve the linear programming
problem.

6. Examples : Multiband Filter Design

In this section, it is shown that the proposed algorithm can be applied to the design of multiband microwave filters
[18]. Multiband filters pass certain parts of the frequency range while filtering out other parts of the frequency range.
This divides the frequency spectrum into a series of pass bands and stop bands which are separated by transition
bands. For the design of such filters, several upper and lower bounds are imposed on different parts of the magnitude
spectrum. The goal of the interval-based magnitude Vector Fitting method is to compute an accurate transfer function
that satisfies these constraints.

As a first example, the modeling of a bandpass filter is considered that exhibits the following magnitude character-
istics [2]:

−∞ dB ≤ |H(s)| ≤ −20 dB for 4.5 GHz ≤ ω ≤ 4.7 GHz (33)

0 dB ≥ |H(s)| ≥ −3 dB for 4.9 GHz ≤ ω ≤ 5.1 GHz (34)

−∞ dB ≤ |H(s)| ≤ −20 dB for 5.3 GHz ≤ ω ≤ 5.5 GHz (35)

It is noted that the bounds are imposed on the magnitude, rather than the squared magnitude function. The new
interval-based algorithm, as described in this paper, is applied to compute a 4-pole transfer function through the intervals
at 100 equidistantly spaced frequencies. The magnitude of the resulting rational approximation is shown in Fig. 1 and
it is seen that the calculated transfer function satisfies the design specifications, as desired.

The second example is another bandpass filter with following characteristics:

−∞ dB ≤ |H(s)| ≤ −13.2 dB for 0 ≤ ω ≤ 0.2π (36)

0 dB ≥ |H(s)| ≥ −0.5 dB for 0.25π ≤ ω ≤ 0.45π (37)

−∞ dB ≤ |H(s)| ≤ −23 dB for 0.52π ≤ ω ≤ π (38)
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Fig. 1. Bandpass filter (example 1) : magnitude approximation using intervals.

It is based on a similar example that was reported previously in [1]. However, in this case, the pass band (37) is
chosen to be twice as small. This leads to more restrictive constraints and makes the modeling somewhat more difficult.
Again, the interval-based magnitude Vector Fitting is applied and a 4-pole transfer function is computed through the
intervals at 100 equidistantly spaced frequencies. The magnitude of the resulting rational approximation is shown in
Fig. 2 and it is seen that an excellent solution is obtained.

7. Example : Fitting of noisy magnitude spectra

It is known that the convergence properties of the original Vector Fitting algorithm become severely impaired if the
response to be fitted is contaminated with noise. To relieve these difficulties, some relaxation based fitting techniques
with an optional hard pole relocation procedure can be applied [11]. However, if the maximum deviation of the noise
is known in advance, then this information can be used as an interval bound for the proposed algorithm. The example
below illustrates that the interval-based magnitude Vector Fitting can be useful to compute transfer functions from
noisy magnitude spectra.

The magnitude of the reflection coefficient S11 of a lowpass filter is calculated by a full-wave planar electromagnetic
simulator over the frequency range from 2 GHz to 4 GHz. As an illustration, some random uniformly distributed noise

Fig. 2. Bandpass filter (example 2) : magnitude approximation using intervals.
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Fig. 3. Lowpass filter (noise) : magnitude approximation using intervals.

Fig. 4. Lowpass filter (noise) : zoom of Fig. 3.

with a maximum deviation of ±0.01 is added to the data. Figs. 3 and 4 show a visualization of the noisy frequency
response (green curve), and the extremal boundaries of the noise (black curves). The interval-based magnitude Vector
Fitting algorithm is applied to compute a 10-pole transfer function through 300 equidistantly spaced frequencies, and
the magnitude of the corresponding transfer function is shown for comparison (red curve). It can be seen that the
response of the transfer function lies within the predefined interval boundaries, and a fair agreement with the noisy
frequency response is observed.

8. Conclusion

A new variant of magnitude Vector Fitting has been derived, that calculates a transfer function based on interval
data. Several examples show that it can be applied successfully to the design of multiband microwave filters and the
fitting of noisy magnitude spectra. Interval fitting techniques are an alternative to standard Vector Fitting which is
definitely worth further exploration.
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