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a b s t r a c t

Broadband macromodeling of frequency domain responses by Vector Fitting can be computationally
demanding in CPU time and memory. This paper presents a practical solution to reduce the computational
cost that is involved with the modeling of high-order frequency responses. It applies a piecewise fitting
strategy that makes use of a fast rational interpolation scheme to identify a representative set of data
samples and an appropriate model order. This information is exploited by the Vector Fitting algorithm
eywords:
ector fitting
acromodeling

requency dependent network equivalent
FDNE)
ational interpolation
east-squares fitting

to extract the poles of the broadband macromodel in a reduced amount of time. The calculation of the
residues is then solved as a linear approximation problem, and standard model reduction techniques can
be applied as an optional step to remove pole redundancies in the model. It is shown by an example
that substantial savings are obtained in terms of computation time and memory requirements, when
compared to the standard fitting procedure.

© 2009 Elsevier B.V. All rights reserved.

ystem identification

. Introduction

The accurate simulation of power system transients requires
he usage of fast broadband macromodeling techniques. Such
echniques are used for extracting frequency-dependent models
f devices and subnetworks starting from measured or com-
uted responses in the frequency domain. The use of rational
acromodels leads to highly efficient transient simulations in

he time domain, and the inclusion in electromagnetic transient
rograms (such as EMTP) is straightforward. Unfortunately, the
alculation of accurate macromodels from highly resonant fre-
uency responses can be time-consuming and memory demanding.
igh-order responses frequently occur when modeling power sys-

em subnetworks by a frequency-dependent network equivalent
FDNE).

Standard modeling approaches make use of Levi’s polynomial-
ased fitting or an iterative weighted least-squares procedure to

dentify the coefficients of the macromodel [1]. Due to the struc-

ure of the associated least-squares matrix, it is known that such

ethods are prone to numerical ill-conditioning, especially for
igh-order cases. This makes the approach inadequate for the wide
and modeling of network equivalents and transformers. A pos-

∗ Corresponding author at: Ghent University - IBBT, Information Technology
INTEC), Sint Pietersnieuwstraat 41, 9000 Ghent, Belgium.

E-mail address: dirk.deschrijver@intec.ugent.be (D. Deschrijver).

378-7796/$ – see front matter © 2009 Elsevier B.V. All rights reserved.
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sible solution to overcome this difficulty is the partitioning of
the frequency band into multiple sections along the imaginary
axis. Each partition is modeled separately to identify the poles,
and the residue matrices are calculated afterwards by fitting the
overall response with the earlier identified poles. In [2], Min sug-
gests to estimate the order of each partition by using a minimum
eigenvalue tracking method, or by counting the number of reso-
nance peaks. Inaccuracies in the overall macromodel are reduced by
means of sub-band reordering, sub-band dilation and pole replace-
ment. Noda [3] improves the accuracy and robustness of the fitting
method by using an adaptive weighting scheme, column scaling
and iteration step adjustment. The model order of each partition is
estimated by a stepwise increase of the number of poles until some
predefined accuracy level is reached.

Since the introduction of robust fitting techniques, such as Vec-
tor Fitting [4–7], most of the numerical inaccuracies can nowadays
be avoided. Nevertheless, it is found that this method may become
computationally inefficient if the modeling of frequency responses
requires a very high order. The identification of the poles involves
the solution of a system of equations using a QR decomposition,
which has cubic complexity. Also, an eigenvalue problem needs
to be solved which scales cubically with the size of the prob-

lem. Several iterations may be required to relocate the poles to an
acceptable position, and this process needs to be repeated several
times in order to find an appropriate model order. This makes the
approach impractical for situations with a high order and many
frequency samples. Solving the Normal Equations (NE) is a possible

http://www.sciencedirect.com/science/journal/03787796
http://www.elsevier.com/locate/epsr
mailto:dirk.deschrijver@intec.ugent.be
dx.doi.org/10.1016/j.epsr.2009.06.004
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Table 1
Algorithm overview.

Step 1 Partition the frequency response into multiple partitions
Step 2 Subject each partition to adaptive sampling and order

estimation using a fast rational interpolation procedure,
until the desired accuracy is reached

Step 3 Subject each partition to pole extraction by ROVF based on
the data sampling and model order that was found in Step 2

Step 4 Calculate the residues of the compound expression by
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fitting the overall response with the poles that are found in
Step 3

tep 5 Remove redundant poles in the model (optional)

ay to reduce computation time and memory consumption, as it
akes the least-squares matrices more compact. However, wide-

and responses may still require excessive computer resources. In
ddition, usage of normal equations may also result in an undesired
oss of accuracy due to numerical ill-conditioning.

In order to overcome the above problem, a fast piecewise ratio-
al interpolation technique is combined with an adaptive sampling
trategy. This approach selects a reduced set of data samples which
haracterizes the entire frequency response. At the same time, a
ood estimate for the model order is obtained. Based on this infor-
ation, the Vector Fitting technique [4] with relaxation [5] and

rthonormalization [6] (ROVF) is used to calculate the poles in a
educed amount of time [7]. Optionally, standard model reduc-
ion techniques can be applied to remove pole redundancies in the

odel.

. Identification of poles

The approximation of a simulated frequency response (s, H(s))
y a rational macromodel R(s) can be very time consuming, and
ay require a prohibitive amount of computer resources. In order

o alleviate the computational burden, the frequency range of inter-
st [fmin, fmax] is divided into several neighboring partitions which
re pair-wise disjoint. The width of each partition is divided in such
way that the total amount of resonant peaks is equally divided

ver the partitions. Each partition is treated as a separate frequency
esponse, and it is subjected to a rational interpolation procedure
Section 2.1) that makes use of an adaptive sample selection and
rder estimation scheme (Section 2.2). Afterwards, the poles of
ach partition are extracted by ROVF (Section 2.3), and are used to
alculate the residues of the compound response (Section 3). The
pproach is summarized in Table 1.

.1. Fast rational interpolation using Thiele-type continued
ractions

This section describes a fast rational interpolation technique that
s based on Thiele-type continued fractions [8]. If a sparse set of k + 1
ata samples (s,H(s)) is given, then a rational interpolating func-
ion Rk(s) can easily be obtained by forming a finitely truncated
ontinued fraction of the following form:

k(s) = H(s0) + s − s0

�(s0, s1) + s−s1
�(s0,s1,s2)+ ...

...+
s−sk−1

�(s0,...,sk−1,sk)

(1)

This function is compactly represented as

k(s) = H(s0) +
k∑ s − sv−1|

(2)

v=1

|�(s0, . . . , sv−1, sv)

The interpolant (1) is uniquely defined by the coefficients �,
hich are called the inverse or reciprocal differences [9–12]. They

orm the rational counterpart of Newton’s divided differences and
ms Research 79 (2009) 1574–1578 1575

they are computed recursively from the selected data samples in
the following way

�(s0, sv) = s0 − sv

H(s0) − H(sv)
(3)

�(s0, . . . , sv−1, sv) = sv − sv−1

�(s0, . . . , sv−2, sv) − �(s0, . . . , sv−2, sv−1)

Initially, the first data sample (s0, H(s0)) is interpolated by the
constant function R0(s) = H(s0). As a new data sample (s1, H(s1)) is
selected, the continued fraction (1) can efficiently be updated by
computing the corresponding inverse difference �(s0, s1), and by
adding a tail to the expansion, resulting in R1(s). Additional data
samples can be interpolated in a similar way by expanding the
fraction recursively. Once all data samples are selected and inter-
polated, the rational model can easily be evaluated at intermediate
frequencies s by a bottom-up evaluation of (1). It is possible to refor-
mulate the continued fraction as a ratio of two polynomials using
three-term recurrence formulas. The theoretical details about this
procedure are well-reported in numerical analysis textbooks, see
[10]. It is noted that this interpolation scheme is fast, since it does
not require any matrix inversion.

2.2. Sample selection and order estimation

It is known that the order of the rational function increases step-
wise with the number of interpolated data samples, according to a
staircase diagram [10]. To find a good estimate of the model order,
it suffices to use a very basic adaptive sampling algorithm which
selects a quasi-minimal set of key frequency samples that charac-
terize the response of the partition. It is described as follows:

Initially, four data samples are selected which are equidistantly
spread over the frequency range of interest. Based on these data
samples, a rational interpolant (1) is calculated for each element
of the transfer matrix, as described in Section 2.1. In successive
iteration steps, the frequency response of the model is evaluated
and compared to the reference data at intermediate frequencies. An
additional data sample is selected at the frequency of largest mis-
match, and the interpolant is expanded by adding a tail to (1). This
process is repeated until the interpolant approximates the overall
response of the partition sufficiently well, up to some predefined
accuracy level.

Therefore, it is guaranteed that the model order is chosen suf-
ficiently high to approximate the reference data, while the sparse
sample distribution avoids overfitting of the model. Since the ratio-
nal interpolant corresponding to each matrix element is based on
the same number of samples, it is clear that the model order for
each matrix element is the same.

2.3. Pole-identification by relaxed orthonormal vector fitting

Although it is possible to extract the poles of (1) from a three-
term recurrence relation, it is found that this approach often
generates very large or very small values from the partial denomi-
nators, thereby causing underflow or overflow of the floating-point
representation [13]. Also, the model does not satisfy physical prop-
erties of a system, such as e.g. causality and stability of the poles.

To resolve this problem, the pole-identification step of ROVF is
used to identify a set of stable poles in a robust way [4–7]. Based
on the selected data samples and corresponding model order of
(1), as computed in Section 2.2, it calculates a rational function

approximation of the following form:

R(s) = (�H)(s)
�(s)

=
∑P

p=1cp˚p(s, a) + d + sh

c̃0 +
∑P

p=1c̃p˚p(s, a)
(4)
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Fig. 2. Resulting rational approximation: 40 equally spaced partitions.

accuracy of RMS = 1E−4. It is observed that the overall RMS error of
the broadband model corresponds quite well to the desired accu-
racy for a varying number of partitions (from 5 to 60). This confirms
that the approach is robust, and that the accuracy of the model is
fairly insensitive towards the choice of partitioning.

Table 2
RMS error and model order vs. partitioning.

#Part. RMS #Poles #Part RMS #Poles

5 1.5E−4 394 35 2.6E−4 540
Fig. 1. Power system distribution system (lengths in km).

The basis functions ˚p(s, a) are orthonormal rational func-
ions which are based on a prescribed set of starting poles a [6].
hese poles are chosen according to a heuristical scheme that was
roposed in [4]. Based on the selected data samples and the cor-
esponding model order that was determined in Section 2.2, the
oefficients cp, d, h and c̃p of the transfer function are found by iter-
tively minimizing the Sanathanan–Koerner cost function [1]. The
elaxed non-triviality constraint in [5] is applied in order to improve
he convergence properties of this iterative scheme. Once the final
olution has been attained, the poles are found by forming the
inimal state-space realization of �(s) and solving an eigenvalue

roblem. All details about this procedure are reported in [7].

. Identification of residues

Once the procedure in Sections 2.1–2.3 is applied to each par-
ition, all the poles and the selected data samples are gathered
o compute a pole-residue model of the compound response [4].
ne could apply partitioning to the identification of residues as
ell, but it was found that the entire frequency response should be

onsidered at once to obtain a robust and reliable procedure.

. Example: FDNE identification

As an example, frequency dependent network equivalent (FDNE)
dentification of a power distribution system is considered. The sys-
em has two 3-phase buses as terminals (A, B), and is shown in Fig. 1.
he 6 × 6 admittance matrix Y(s) is calculated with respect to these
erminals in the frequency range 10 Hz–1 MHz. All lines and cables
re modeled in the phase domain while taking into account the fre-
uency dependent effects in conductors and ground. It was shown
n [15] that representing this subnetwork by a macromodel (FDNE)
an lead to much faster time domain simulations compared to a
etailed representation by traveling wave models.

All timing results are calculated with a Pentium 4 laptop com-
uter with a clock frequency of 2.66 GHz and 448 MB RAM memory
n a Windows XP environment using MATLAB.

The proposed technique is used to calculate a broadband pole-
esidue model with stable poles only. To reduce the computational
orkload, the frequency range is divided in several, equally spaced
artitions, which are modeled with a target root-mean-square
RMS) error of approximately 1E−4.

Fig. 2 shows the frequency response of all matrix elements (solid
ine), and the deviation of the calculated rational fitting (dashed
ine). In this case, the number of intervals is chosen to be 40 and

n overall RMS fitting error of 4E−5 is obtained, which is clearly
ufficient. Fig. 3 shows a zoom of Fig. 2, which shows that a good
greement is found between the fitting model and the reference
ata. In this figure, the selected data samples are also marked
ith crosses. It is seen that the interpolation approach results in
Fig. 3. Zoom of Fig. 2 over the frequency range 400–600 kHz.

a non-uniform sampling, which is more dense around the resonant
frequencies.

Table 2 shows the overall accuracy and model order, for a vary-
ing number of partitions (from 5 to 60). Each sub-interval has been
subjected to adaptive sampling and interpolation to reach a desired
10 1.5E−4 416 40 4.4E−5 562
15 8.6E−5 448 45 6.5E−5 582
20 6.9E−5 478 50 4.3E−5 626
25 8.9E−5 498 55 4.0E−5 646
30 6.6E−5 532 60 3.2E−5 658
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Fig. 4. Computation time vs. number of partitions.

Fig. 4 shows the computation time of the proposed algorithm
or a varying number of partitions. The black area indicates the
omputation time of the pole identification including the Thiele
re-processing step (Sections 2.1–2.3). The dark-grey area repre-
ents the computation time of the residue identification (Section
) if the normal equations (NE) are solved, while the light-grey area
enotes the additional computational cost if QR decomposition is
sed instead of NE.

It is clear that the computation time of the pole identification
an be significantly reduced by using a larger amount of partitions.
owever, the number of poles increases with the number of parti-

ions, and therefore the residue identification eventually becomes
omputationally more expensive. Nevertheless, Fig. 4 shows that
he computational overhead of selecting too many partitions (>40)
s fairly small as compared to the situation when too few partitions
<20) are chosen. For this example, it is found that 35 partitions is

good compromise. In this case, the overall macromodeling time

orresponds to 39.42 s if the residues are calculated using a QR
ecomposition, or 22.63 s if the normal equations are solved.

Fig. 5. Computation time of Thiele pre-processing step.
Fig. 6. Hankel singular values (40 partitions, reduced from 562 to 375 poles).

The black area in Fig. 5 shows the computation time of the Thiele
pre-processing step, which is used to select a sparse sampling and
appropriate model order (Sections 2.1 and 2.2). The grey area shows
the computation time of the VF calculations (Sections 2.3 and 3).
The sum of both areas in Fig. 5 equals the sum of the areas in Fig. 4
if the residues are calculated using QR decomposition. It shows
that the computational cost of the pre-processing step is only a
small fraction of the overall macromodeling time if the number of
partitions is chosen sufficiently high.

It is noted that the amount of poles (or selected frequency sam-
ples) increases with the number of partitions. Therefore, the model
may contain redundant poles which are not needed to have a good
overall approximation, even though they are required to fit some
partition of the overall response. This results from the fact that poles
in the neighboring frequency ranges are neglected during the pole
identification of each partition. To remove the redundancy in the
model, standard Model Order Reduction methods can be applied
[14]. Fig. 6 shows the Hankel singular values of the model, which
measure the contribution of each state to the input–output behav-
ior of the system. Small Hankel singular values indicate that some
states can be discarded to simplify the model, using the ‘balred’
function in MATLAB. It is found that the RMS deviation between the
375-pole reduced order model and the reference data corresponds
to 1.0E−4, which matches the desired accuracy. The additional com-
putation time (48.91 s) is reasonably small when compared to the
use of no partitioning.

Based on the results from Table 2, it is shown in Fig. 7 that the
number of poles and the number of partitions are linearly cor-
related. By fitting a linear regression model to these values, it is
possible to extrapolate the number of poles that would be needed if
partitioning is not applied (#partitions = 1). It turns out that approx-
imately 378 poles are required to fit the overall response. This
corresponds closely to size of the reduced model, which indicates
that nearly all redundant poles are removed.

It is clear that the computation time of the ROVF step would
be much higher if the pre-processing step was not used. A direct
application of the default ROVF routine has been considered to

fit the compound response without partitioning or adaptive sam-
pling. It was found that the modeling of the 36 matrix elements
using 10,000 equidistant data samples is computationally infeasi-
ble, especially if no prior knowledge about the model order, and the
required number of ROVF iterations is available.
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In 1993, he joined the EDA company Alphabit (now part of Agilent). He was one of
the key developers of the planar EM simulator ADS Momentum. Since September
Fig. 7. Extrapolation of linear regression model.

. Conclusions

Rational fitting of broadband frequency-domain responses using
elaxed Orthonormal Vector Fitting becomes computationally
xpensive and resource demanding if the bandwidth and com-
lexity of the structure increases. Rational interpolation using
hiele-type continued fractions is used as a fast pre-processing step
o calculate a set of representative data samples and to determine
he model order in advance. This information is exploited by the
OVF algorithm to compute a physical pole-residue model in a sig-
ificantly reduced amount of time. As an optional step, standard
odel reduction techniques can be applied to remove the redun-

ant states in the macromodel.
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