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Abstract
This paper applies a reliable and efficient algorithm for

passivity enforcement of common-pole multiport S-parameter
macromodels. It ensures that the maximum passivity violation
decreases monotonically in each iteration step, and convergence
to a uniformly passive macromodel is guaranteed.

1 Introduction
The synthesis of accurate broadband macromodels from tab-

ulated S-parameter data is very important for the design of pas-
sive microwave systems and devices. Although standard iden-
tification techniques are available to extract the model coeffi-
cients accurately, the resulting macromodel is stable but pos-
sibly non-passive [1]. This paper applies a new iterative algo-
rithm [2] that is able to enforce passivity by means of a fast
pole perturbation scheme. By perturbing only the poles of the
macromodel, it is possible to deal with large multiport systems
that share a common set of poles in a very efficient way.

Although the idea of pole perturbation has been considered
before [3], the method in [2] is substantially different. This
approach perturbs the poles of the model while preserving the
zeros, whereas [3] perturbs the poles of the model while pre-
serving the residues. By considering the pole-zero form instead
of the pole-residue form, it is possible to derive some analytic
conditions which guarantee that the maximum passivity viola-
tion is monotonically decreasing in each iteration step.

2 Passivity Assessment
The passivity enforcement method considers a stable, but po-

tentially non-passive multiport system in state-space form

jωX(jω) = AX(jω) + BU(jω) (1)
Y (jω) = CX(jω) + DU(jω). (2)

A stable realization is obtained by applying the fast Vector Fit-
ting procedure to some tabulated S-parameters, while enforcing
a common pole set for each matrix element [4]. The exact defi-
nition of passivity stipulates that the transfer matrix S(jω)

S(jω) = C(jωI −A)−1B + D (3)

must be unitary bounded for all frequencies such that

max
ω

(σ(jω)) ≤ 1,∀σ(S(jω)) (4)

The eigenvalues of an associated Hamiltonian matrix can be
used to assess model passivity [5]. An overview and compari-
son of existing work is given in [6], and the references therein.
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3 Passivity Enforcement
If the macromodel is found to be non-passive, then the pas-

sivity enforcement algorithm in [2] is applied. It converts the
state-space model to a pole-zero form and perturbs the common
poles until all singular value curves (4) are unitary bounded.
During this process, it is ensured that the perturbation does not
introduce new violations at other frequencies. Therefore some
additional constraints are imposed, which guarantee that the
size of the largest passivity violation decreases monotonically
in each iteration step. These conditions allow the algorithm to
pinpoint exactly the region in which a perturbed pole can be
located without introducing new passivity violations.

The iterative compensation algorithm consists of 3 steps.
First, it calculates the frequency that corresponds to the largest
passivity violation, based on the eigenvalues of the Hamilto-
nian. Then, it selects the pole of the model for which the con-
tribution to the largest passivity violation is maximal. Finally,
it perturbs the pole in such a way that the passivity violation
becomes smaller, without introducing new violations. At the
same time, the model deviation is minimized by error control.

These steps are repeated iteratively until the macromodel is
passive. The details about this procedure are reported in [2].

4 Example : 48-Port BGA Package
In this example, the presented approach is used to compute

a passive macromodel of a 48-port ball grid array package [3].
The scattering parameters of the structure are simulated from
DC up to 10 GHz, and Vector Fitting is used to approximate the
response by a 6-pole proper transfer function using 100 data
samples. It is seen from Fig. 1 that the macromodel has sev-
eral non-negligle passivity violations, both inside and outside
the frequency range of interest. The proposed passivity en-
forcement procedure is applied to compensate the violations,
and converges to a passive macromodel in only 18 seconds on
a Dual Core 2.4 GHz laptop computer. Figs. 2 and 3 show
that the accuracy of the overall macromodel is well preserved,
both in terms of the magnitude and the phase angle respec-
tively. The worst case error over all matrix elements is -43
dB, which is quite small given the size of the maximum viola-
tion (σmax = 1.0069). The RMS deviation that was introduced
by the perturbations corresponds to 3 × 10−2. It is seen from
Fig. 4 that the maximum singular value of the scattering matrix
decreases monotonically in each iteration step. The algorithm
converges in 10 iterations to a guaranteed passive macromodel.

Conclusions
A robust passivity enforcement algorithm is applied to com-

pensate the non-passive behavior of a large common-pole state-
space model (BGA package). The maximum singular value of
the scattering matrix decreases monotonically in each iteration
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Figure 1: Singular values of scattering matrix.
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Figure 2: Magnitude of matrix elements (subset).
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Figure 3: Phase angle of matrix elements (subset).
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Figure 4: Maximum singular value in each iteration step.

step, and convergence to a passive macromodel is guaranteed.
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