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Modified Half-Size Test Matrix for Robust Passivity
Assessment of �-Parameter Macromodels

Dirk Deschrijver and Tom Dhaene, Senior Member, IEEE

Abstract—This letter presents a modified algebraic passivity test
to check if an -parameter based macromodel with symmetric
scattering matrix is passive or not. To construct the passivity test
matrix, the inversion of another matrix is required that can pos-
sibly be singular. If this is the case, such methods will fail since
they cannot be applied directly. This letter proposes an elegant so-
lution to deal with this problem. The effectiveness of the approach
is illustrated by two numerical examples.

Index Terms—Hamiltonian matrix, macromodeling, passivity
test, -parameters, transfer matrix, vector fitting.

I. INTRODUCTION

T HE characterization of broadband linear systems from
measured or simulated frequency responses by Vector

Fitting has received a lot of attention in literature [1], [2].
Although stability of the macromodel can be enforced by a
simple pole-flipping scheme, the passivity is not guaranteed by
construction. Nevertheless, passivity of the macromodel is of
crucial importance since a non-passive macromodel may lead
to unstable transient simulations in an unpredictable manner.
Fortunately some algebraic passivity tests can be used to verify
if the macromodel is passive or not and to pinpoint the exact
boundaries of possible passivity violations. Such passivity
tests are often based on the existence of purely imaginary
eigenvalues of an associated Hamiltonian matrix [3].

In the case of systems with a symmetric scattering matrix,
a half-size test matrix can be derived that is only half the size
of the Hamiltonian matrix. It is shown in [4] that this leads to
significant savings in terms of computation time and memory
resources. Unfortunately, this method may fail in some cases,
since the construction of the half-size test matrix requires the
inversion of another matrix that is possibly singular. A practical
solution to deal with this problem is to perturb the feedthrough
matrix of the state-space model by a small amount. Although
this approach can sometimes be effective, a more elegant solu-
tion is proposed in this letter. Two numerical examples illustrate
that the technique is accurate and reliable.

Once the regions of the passivity violations are identified,
standard passivity enforcement techniques can be applied for
compensation. Such methods perturb the parameters of the
state-space model (such as e.g., the poles [5], [6], residues
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[7], [8], residue eigenvalues [9], etc.) until all the passivity
violations are collapsed and a passive macromodel is obtained.

A similar approach is possible for -parameter models [10].

II. MACROMODELING

A direct application of Vector Fitting to the frequency sam-
ples yields a rational macromodel in the pole-residue form

(1)

provided that represents the corresponding element on
row and column of the scattering matrix. The poles
and residues are real or come in complex conjugate pairs,
while is a constant real term. All elements of the scattering
matrix can be fitted with a common set of poles or a
separate set of poles for each scattering element. Stability of the
poles can be ensured by a pole-flipping scheme, but passivity
of the macromodel is not guaranteed by construction. A real
state-space realization of the compound system can easily be
derived as shown in [1]

(2)

(3)

III. PASSIVITY CONDITION CHECK

The frequency-domain definition of passivity for -param-
eter based macromodels stipulates that all singular values
of scattering matrix are unitary bounded [12]

(4)

This condition can easily be verified algebraically by computing
the eigenvalues of an associated Hamiltonian matrix [3]

(5)

where and . In the case of
symmetric systems, passivity condition (4) can also be verified
by solving the eigenvalues of a half-size test matrix

(6)

It was shown in [4] that the smaller passivity matrix gives,
via the subset of its negative-real eigenvalues , the frequen-
cies where a singular value of crosses unity. By
computing the slopes of the singular value curves at the corre-
sponding frequencies, it is possible to pinpoint the exact bound-
aries of a passivity violation [7]. The fast passivity test (6) can
only be applied if and are non-singular.
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IV. PROPERTIES OF RECIPROCAL SYSTEMS

Theorem 1: Let be the state-space realization
of a stable system with transfer matrix

(7)

then the transfer matrix of the reciprocal system with
the corresponding realization is given by [11]

(8)

provided that the matrices are defined by the bijective mapping

(9)

It is observed that the locus of the singular values
of for all , and the locus

of the singular values of for all
coincide. This is evident, since the imaginary

axis is mapped onto itself by taking its inverse. Therefore,
the singular values of are unitary bounded if this
also holds for the singular values of .

V. MODIFIED PASSIVITY CHECK

Based on the previous considerations, it becomes clear that
is unitary bounded if this is also true for the reciprocal

system [10]. This leads to the following theorem.
Theorem 2: Let be a stable state matrix and assume that

or is singular. Then with
if and only if , ,

and with passivity matrix

(10)

provided that , , and are defined as in (9).
If or are also singular, then the half-size

test matrix cannot be applied. In such case, the crossings can
still be identified from the Hamiltonian matrix of the reciprocal
system by shifting the frequency axis towards a frequency
with and non-singular, see [10] for details.
It is clear from Theorem 2 that the crossings of the singular
value curves of are located at the imaginary
frequencies that correspond to the square root of the non-zero
negative-real eigenvalues (see [4]).
Therefore, it follows that the singular value curves of

will exceed unity at the frequencies .

VI. EXAMPLE: MICROWAVE RLC FILTER

The proposed algorithm is applied to check the passivity of a
non-passive macromodel of a 2-port RLC Filter, reported from
[4]. The real state-space realization of the model is given below,
so the reader can easily verify the computations

Fig. 1. Singular values of ������� and crossover frequencies using �� .

It is found that the standard half-size passivity test cannot
be applied, because the construction of in (6) requires
the inversion of , which is a singular matrix. There-
fore, the modified half size passivity test matrix in (10)
is formed. The eigenvalues of this matrix are shown in the
left column of Table I, while the square root of the eigen-
values and its inverse are shown in the middle and the right
column respectively. Based on the negative real eigenvalues

of , it is found that the
singular values of cross the unity line at

. This means that
the passivity of the macromodel is violated at the frequencies

of . To verify
this result, the singular value curves of and are
computed over the frequency ranges of interest, and the results
are visualised in Figs. 1 and 2. It is clear that proposed test
matrix accurately pinpoints the boundaries of the violation.

VII. EXAMPLE: QUARTER WAVELENGTH FILTER

The scattering matrix of a 2-port quarter wavelength filter is
calculated using the planar full-wave electromagnetic simulator
Agilent EEsof Momentum [13] over the frequency range of in-
terest – . The Vector Fitting technique is then
used to compute a 28-pole proper macromodel with stable poles.
Fig. 3 shows the magnitude of the reflection coefficient and
the transmission coefficient . It is found that the standard
half-size passivity test in (6) cannot be applied, because

is a singular matrix. To detect possible passivity viola-
tions, the modified half-size passivity test matrix in (10)
is formed, and the crossings of the singular value curves are
identified according to Theorem 2. Fig. 4 shows the singular
value curves of , where the calculated crossings
are marked with black dots. It is seen that several non-negligible
passivity violations are accurately detected by the algorithm,
most of them are located within the frequency range. Once the

Authorized licensed use limited to: University of Gent. Downloaded on May 11, 2009 at 07:31 from IEEE Xplore.  Restrictions apply.



DESCHRIJVER AND DHAENE: MODIFIED HALF-SIZE TEST MATRIX 265

Fig. 2. Singular values of ����� and crossover frequencies using �� .

TABLE I
PASSIVITY TEST MATRIX RESULTS

Fig. 3. Magnitude of scattering matrix elements � and � .

regions of the violations are pinpointed, standard passivity en-
forcement techniques such as [5]–[9] can be applied. It is also
noted that the computation time to calculate the eigenvalues of

takes about 0.003 seconds in a MATLAB environment on
an Intel Dual Core 2.4 GHz laptop computer with 2 GB of RAM
memory.

VIII. CONCLUSION

This letter presents an algebraic test to assess the passivity
of -parameter based macromodels with a symmetric scattering

Fig. 4. Singular values of ����� and crossover frequencies using �� .

matrix. It substitutes the half-size test matrix in [4] if singularity
problems occur. The eigenvalues of the matrix allow accurate
pinpointing of the crossover frequencies which contain the exact
boundaries of all the passivity violations. In the unlikely event
that both tests are inapplicable, the eigenvalues of a full-size
Hamiltonian matrix should be solved.
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