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Fast Passivity Enforcement of �-Parameter
Macromodels by Pole Perturbation
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Abstract—This paper presents a fast iterative algorithm for pas-
sivity enforcement of large nonpassive macromodels that share a
common set of poles. It is ensured that the maximum passivity vio-
lation is monotonically decreasing in each iteration step, and con-
vergence to a passive macromodel is guaranteed.

Index Terms—Broadband macromodeling, numerical tech-
niques, passivity enforcement, vector fitting.

I. INTRODUCTION

T HE SYNTHESIS of accurate broadband macromodels
from tabulated -parameter data is very important for the

design of passive microwave systems and devices. Although
standard identification techniques are available to extract the
model coefficients with a high accuracy, the resulting macro-
model is stable, but possibly nonpassive [1]–[3]. Nevertheless,
passivity of the macromodel is of crucial importance since a
nonpassive model may lead to unstable transient simulations
in an unpredictable manner. Several techniques have been
considered to address this issue, ranging from convex opti-
mization [4] to Nevanlinna-pick interpolation [5], semidefinite
programming [6], linear or quadratic programming [7], residue
perturbation [8]–[10], pole perturbation [11], modal perturba-
tion [12], waveform shaping [13], and others [14]–[17].

This paper introduces a new iterative algorithm that is able to
enforce passivity by means of a fast pole perturbation scheme.
By perturbing only the poles of the macromodel, it is possible
to deal with large multiport systems that share a common set
of poles in a very efficient way. Although the idea of pole per-
turbation has been considered before [11], the proposed method
is substantially different. This approach perturbs the poles of
the model while preserving the zeros, whereas [11] perturbs the
poles of the model while preserving the residues. By consid-
ering the pole-zero form instead of the pole-residue form, it is
possible to derive some analytic conditions which guarantee that
the maximum passivity violation is monotonically decreasing in
each iteration step. Therefore, it is also guaranteed that the pro-
posed method will converge to a passive macromodel, as illus-
trated by three examples.
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II. PASSIVITY CONDITION

The proposed method in this paper considers a stable, but
potentially nonpassive multiport system in state-space form

(1)

(2)

provided that is the state matrix, is the input matrix,
is the output matrix, and is the feedthrough matrix with ap-
propriate dimensions [18] . A stable realization can be obtained
by applying the fast vector fitting procedure to some tabulated

-parameter data, while enforcing a common pole set for each
matrix element [19]. The associated transfer matrix is

(3)

In the case of scattering parameters, the exact definition of pas-
sivity stipulates that must be unitary bounded

(4)

such that the following equivalent condition is satisfied:

(5)

The singular values curves are then defined as

(6)

III. ANALYTIC PASSIVITY TEST

The passivity of the state-space model can easily be verified
by computing the eigenvalues of a Hamiltonian matrix [21]

(7)

where and . If is an imaginary
eigenvalue of the matrix , then the corresponding frequency

may denote the crossover between a passive and a nonpassive
frequency band [20]. By computing the slopes of the singular
value curves at the purely imaginary eigenvalues, it is possible to
determine the exact boundaries of a passivity violation. If all the
eigenvalues of the Hamiltonian matrix have a nonvanishing
real part, then the system is passive [21].

IV. PERTURBATION CONSTRAINTS

If the macromodel is nonpassive, then the passivity enforce-
ment algorithm perturbs the common poles of the state-space
model until all singular value curves (5) are unitary bounded.
During this process, it is ensured that the perturbation does not
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introduce new violations, which may result at other frequen-
cies. Therefore, some additional constraints must be imposed,
which guarantee that the size of the largest passivity violation
decreases monotonically in each iteration step. Two specific
cases are distinguished: the perturbation of a real pole and the
perturbation of a complex conjugate pair of poles.

A. Constraints on a Real Pole

In the case of a real pole perturbation, the perturbed transfer
matrix is obtained by multiplying each matrix element
of by a frequency-dependent factor . This factor
cancels out the original real pole and introduces a perturbed
real pole , which yields a modified transfer function

(8)

The singular values of are then described as follows:

(9)

(10)

To ensure that the compensation does not introduce new viola-
tions elsewhere, must hold for all , hence,

(11)

Since must be stable, it follows that .

B. Constraints on a Complex Pole Pair

In the case of a complex pole perturbation, the perturbed
transfer matrix is obtained by multiplying each matrix
element of by a frequency-dependent factor .
This factor cancels out the original complex conjugate poles

and introduces a perturbed set of complex conjugate poles
, which yields a modified transfer function

(12)

The effect on the singular values of is similar

(13)

(14)

To ensure that the compensation does not introduce new viola-
tions elsewhere, must hold for all , hence,

(15)

(16)

(17)

where the second-order polynomial on the left-hand side is non-
negative for every if and only if

(18)

and

(19)

provided that the perturbed complex poles are stable.

C. Visualization of Perturbation Area

The previous conditions allow the algorithm to pinpoint ex-
actly the region in which a perturbed pole can be located without
introducing new passivity violations. It suffices to add some at-
tenuation to real poles, but more relaxed conditions are derived
for complex conjugate poles (18), (19). In the latter case, the
complex pole perturbation area is bounded by the following.

• A circle (18) that is centered at the origin with radius ,
having the following parametric coordinates

(20)

• An orthogonal hyperbola (19) that is centered at the origin
with a given parameter .
— If , then the hyperbola has an east–west opening

(21)

— If , then the hyperbola has a north–south opening

(22)

— If , then the hyperbola reduces to the asymptotes.
A visual illustration of the circle and hyperbola is shown in

Fig. 1 , Fig. 2 , and Fig. 3 , where the
valid pole perturbation area is marked in grey.

V. PERTURBATION ALGORITHM

This section presents a simple, but efficient scheme that re-
moves passivity violations by perturbing the poles of the macro-
model. First, the Hamiltonian passivity check (as described in
Section III) is used to determine the passivity of the macro-
model. If the macromodel is found to be nonpassive, then an
iterative algorithm is applied, which consists of the following
steps.
Step 1) Find the frequency that corresponds to the

largest passivity violation based on the eigenvalues
of (7).

Step 2) Select the pole of the model for which the contri-
bution to the largest passivity violation
is maximal.

Step 3) Perturb the pole such that the passivity violation be-
comes smaller, without introducing new violations.
At the same time, minimize the model deviation by
error control.

These steps are repeated iteratively until the macromodel is
assumed passive. As a final step, the passivity is verified by re-
computing the eigenvalues of a Hamiltonian matrix.
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Fig. 1. Pole perturbation area for �� � � � � ��� ���� � ��.

Fig. 2. Pole perturbation area for �� � � � � ��� ���� � ��.

A. Selection of the Relevant Pole

As mentioned in Section III, it is possible to exactly pin-
point the nonpassive regions of the spectrum by considering the
purely imaginary eigenvalues of the Hamiltonian matrix (7). A
simple optimization algorithm can then be applied to find the
frequency , which corresponds to the largest passivity vi-
olation. This problem converges fast since the optimization in-
volves only one variable and the midpoints of each interval can
be used as a good initial guess. Details about this procedure are
well described in the literature (see [8] and [22]).

For each pole of the macromodel, the contribution
to the largest passivity violation can be computed

Fig. 3. Pole perturbation area for �� � � � � ��� ���� � ��.

Fig. 4. Second quadrant of Fig. 2: dots represent valid candidate poles.

as the -norm of the corresponding residue matrix fraction

for (23)

The pole that corresponds to the largest contribution
is perturbed to compensate the passivity violation.

B. Perturbation of the Pole

If is a real pole, then it suffices to add some attenuation
such that , where is a positive real parameter.

If is a complex pole, then a circle is formed, which is cen-
tered at the pole , having a small positive radius

(24)
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Fig. 5. BGA package: singular values of scattering matrix.

Fig. 6. BGA package: magnitude of matrix elements (subset).

Some tuples , which are equidistantly spread over the
circle (24), are chosen to form complex conjugate pairs of can-
didate poles and . Only the
valid pole pairs, which satisfy the perturbation constraints (18)
and (19), are retained. For each of the remaining pole pairs, the
algorithm computes the least squares error
that would be introduced over the frequency range of interest if
the original poles are replaced by the candidate poles [see (12)].
The pole pair that corresponds to the smallest error is then effec-
tively used for the replacement. A visual illustration is shown
in Fig. 4 in case . Although a minimization of the least
squares fitting error is suggested in this paper, it is clear that any
kind of error criterion (absolute or relative) can be used instead
[11], [23].

C. Iteration Scheme

This perturbation process is repeated iteratively until all pas-
sivity violations are removed. Since the perturbation of the poles
guarantees that no new passivity violations are introduced in

Fig. 7. BGA package: phase angle of matrix elements (subset).

Fig. 8. BGA package: maximum singular value in each iteration step.

each iteration step, it suffices to compute the eigenvalues of the
Hamiltonian matrix only once at the beginning and once at the
end of the algorithm. It is noted that the convergence speed of
the iteration scheme depends on the value of that is chosen in
Section V-B. In practice, it can be chosen in such a way that the
pole perturbation factor and in (10) or (14)
compensates approximately a certain percentage of the largest
passivity violation in each iteration step. The percentage is a
tuning parameter that allows the designer to find an acceptable
tradeoff between efficiency (a few large compensations) and ac-
curacy (several small compensations).

VI. EXAMPLE: 48-PORT BALL GRID ARRAY (BGA) PACKAGE

In this example, the presented approach is used to compute a
passive macromodel of a 48-port BGA package [11]. The scat-
tering parameters of the structure are simulated with Agilent
EEsof Momentum [24] from dc up to 10 GHz, and vector fit-
ting is used to approximate the response by a six-pole proper
transfer function using 100 data samples [7]. It is seen from
Fig. 5 that the macromodel has several nonnegligle passivity
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Fig. 9. Hairpin filter: singular values of scattering matrix.

Fig. 10. Hairpin filter: magnitude of matrix elements.

violations both inside and outside the frequency range of in-
terest. The proposed passivity enforcement procedure is applied
to compensate the violations, and converges to a passive macro-
model in only 18 s on a Dual Core 2.4-GHz laptop computer.
Figs. 6 and 7 show that the accuracy of the overall macromodel
is well preserved, both in terms of the magnitude and the phase
angle, respectively. The worst case error over all matrix ele-
ments is 43 dB, which is quite small given the size of the
maximum violation . The rms deviation that
was introduced by the perturbations corresponds to 3 10 .
It is seen from Fig. 8 that the maximum singular value of the
scattering matrix decreases monotonically in each iteration step.
The algorithm converges in ten iterations to a guaranteed pas-
sive macromodel.

VII. EXAMPLE: TWO-PORT HAIRPIN FILTER

In this example, the presented approach is used to compute a
passive macromodel of a two-port microwave hairpin filter [11].

Fig. 11. Hairpin filter: phase angle of matrix elements.

Fig. 12. Hairpin filter: maximum singular value in each iteration step.

The scattering parameters of the structure are simulated in the
frequency domain and vector fitting is used to approximate the
frequency response by a ten-pole proper transfer function [7].
It is seen from Fig. 9 that the macromodel has some in-band
passivity violations at the higher frequencies. The passivity en-
forcement procedure is applied to compensate them, and con-
verges to a passive macromodel in only 2.8 s on the same laptop
computer. Figs. 10 and 11 show that the accuracy of the overall
macromodel is again well preserved, both in terms of the mag-
nitude and the phase angle respectively. The rms deviation that
was introduced by the algorithm from dc up to 15 GHz corre-
sponds to 8 10 , which is acceptable. As can be seen from
Fig. 12, the maximum singular value of the scattering matrix de-
creases monotonically in each iteration step, and the algorithm
converges in 20 iterations to a guaranteed overall passive macro-
model.
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Fig. 13. Interconnect: singular values of scattering matrix.

Fig. 14. Interconnect: magnitude of matrix elements.

VIII. EXAMPLE: FOUR-PORT INTERCONNECT

In this example, the presented approach is used to compute
a passive macromodel of a four-port interconnect system [25].
The scattering parameters of the structure are measured in the
frequency domain from 0.775 to 7.52 GHz and vector fitting is
used to approximate the response by a 100-pole proper transfer
function [7]. It is seen from Fig. 13 that the macromodel has
quite a large outband passivity violation at the lower frequen-
cies. The passivity enforcement procedure is applied to compen-
sate them, and converges to a passive macromodel in only 1.8 s.
The rms deviation between the original and the passive model
is 3 10 . Due to the size of the passivity violation, some vis-
ible difference can be distinguished between the frequency re-
sponse of both models in the vicinity of the violation, as shown
in Figs. 14 and 15. It is clear from Fig. 16 that the maximum
singular value of the scattering matrix decreases monotonically
in each iteration step, and that the algorithm converges in four
iterations to a guaranteed passive macromodel.

Fig. 15. Interconnect: phase angle of matrix elements.

Fig. 16. Interconnect: maximum singular value in each iteration step.

IX. CONCLUSION

This paper has presented an iterative algorithm for passivity
enforcement of large state space macromodels, which are based
on a common pole set. The maximum singular value of the scat-
tering matrix decreased monotonically in each iteration step,
and convergence to a passive macromodel is guaranteed. Three
examples have illustrated the efficiency of the approach.
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