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Stable Parametric Macromodeling Using a Recursive
Implementation of the Vector Fitting Algorithm

Tom Dhaene, Senior Member, IEEE, and Dirk Deschrijver

Abstract—A novel least-squares fitting technique is presented for
the macromodeling of parameterized frequency responses. Such
parametric macromodel can be used for the design, study, and op-
timization of microwave structures. A key benefit of the proposed
method, is that the poles of the macromodel are guaranteed stable
by construction. This can easily be enforced when using the pre-
sented macromodel representation.

Index Terms—Parametric macromodeling, system identifica-
tion, vector fitting, numerical techniques.

I. INTRODUCTION

OBUST parametric macromodeling is becoming increas-
R ingly important for the design, study and optimization
of microwave structures. Parametric macromodels approximate
the variation of the frequency domain electro-magnetic (EM)
behavior of a multiport system in terms of several design vari-
ables that describe physical properties of the structure. Such
macromodels are frequently used for efficient design space ex-
ploration, design optimization and sensitivity analysis.

The calculation of parametric macromodels from frequency
domain responses by Vector Fitting [1] has become a topic of
intense research. A robust multivariate formulation of the Or-
thonormal Vector Fitting technique [2] was recently introduced
in [3]. It was shown that this method accurately models param-
eterized frequency responses with a highly dynamic behavior.
However, a known drawback of the approach is that multivariate
transfer function representation does not guarantee an overall
stability of the poles. Some analytical criteria to detect unstable
poles are provided in [4], but the enforcement of stability re-
mains open for further research.

A solution to the stability problem is considered in [5], where
a parametric macromodel is computed from time domain or
frequency domain responses by barycentric interpolation of
univariate nodes. It is shown that stability of the macromodel is
guaranteed by construction and a simple algorithm for passivity
enforcement is provided. Nevertheless, the technique poses
some restrictions on the organization of the data samples, and
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its applicability is limited to responses that are not contami-
nated by detectable amounts of noise.

This letter presents a new least-squares approach to com-
pute accurate and stable parametric macromodels from simu-
lated frequency domain responses. It exploits the flexibility of
least-squares fitting while ensuring the stability of the macro-
model poles. The technique is illustrated by a parameterized
lossless exponential tapered transmission line model.

II. GOAL STATEMENT

The goal of the identification algorithm is to compute a stable
multivariate rational function R(s, g) from simulated frequency
response data {s,g, H(s,g)} in a least-squares sense. These
data samples are usually S-parameters which depend on a com-
plex frequency s = jw, and several real design parameters
g = {g(™}N_,. The parameters g can be layout variables that
describe the metallizations in an EM-circuit (such as lengths,
widths, . ..) or the substrate parameters (like thickness, dielec-
tric constant, losses, .. .).

III. MACROMODEL IDENTIFICATION

The multivariate rational model R(s,g) is represented as a
partial fraction expansion with parameterized residues [6]
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The poles {a,}/_; of the model are found by fitting the fre-
quency responses for all geometrical parameter combinations
using a common pole set. A fast QR-based implementation of
the relaxed Vector Fitting technique [7] can be applied to com-
pute them in a significantly reduced amount of time [8].

The remaining unknowns of the transfer function (1) are
then the parameterized residues céN)(!J(l), g )). If these
residues are also approximated by a partial fraction expansion
with common poles, then the dimension of the approximation
problem decreases by 1 in each recursion step (¢ = N, ..., 1)
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The base case of the algorithm (¢ = 1) reduces to a univariate
macromodel identification problem which can easily be solved
using standard fitting techniques, see [1] and [7] for details. It is
noted that only the poles {a, }521 in (1) must have negative real
parts to ensure overall stability of the parametric model. This
can easily be enforced by flipping unstable poles into the left
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Fig. 1. Exponential tapered microstrip transmission line [10].
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Fig. 2. Reflection coefficient Sy, fore, = 5.

half plane as shown in [1]. The stability of the poles {bg)}il
in (2) is not necessary, since they do not affect the stability of
the frequency-dependent macromodel in (1).

IV. 3-D EXAMPLE: TRANSMISSION LINE

The presented technique is used to model the reflection co-
efficient Sq; of a lossless exponential tapered transmission line
[9], [10] that is terminated with a matched load, as shown in
Fig. 1, where Zy = 50 Q and Z;, = 100 2 represent the refer-
ence impedance and the load impedance, respectively.

A multivariate macromodel is computed as a function of
the varying relative dielectric constant ¢, = ¢g(!) € [3 — 5]
and varying line length . = ¢(® € [lem — 10cm] over the
frequency range [1 kHz-3 GHz]. Fig. 2 shows the frequency
response of the trivariate structure for a fixed value of €, = 5,
while Fig. 3 shows the variation of the response for an in-
creasing line length L. The initial data is computed over a grid
of 20(e,) x 50(L) x 50(f) samples, and a common set of 14
stable poles {a,}_; is computed, based on all 1000 univariate

frequency responses. The parameterized residues cz(,2)(sr,L)
corresponding to each pole a,, are then fitted as a function of
the line length L for a varying relative dielectric constant e,
using 32 common poles. A similar procedure is also applied

to compute an 18-pole macromodel for the parameterized
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Fig. 3. Reflection coefficient S;; for L = 1,2, 4,6, 10 cm.
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Fig. 4. Trajectories of one 2-D complex residue {?)(e,., L) corresponding to
pole a,, : data evaluated in 20 values of ¢,. and 50 values of L (dots), fit (solid
line).
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Fig. 5. Trajectories of all 1-D complex residues ¢(*)(&,.) corresponding to all
poles b(2) of one 2-D complex residue c{?) (e, L) : data evaluated in 20 values
of &, (dots), fit (solid line).

residues cgl)(er) which depend solely on ¢,. As an example,
some trajectories of these parameterized residues are illustrated
in Figs. 4 and 5 respectively. It is noted that the frequency
response should be sampled sufficiently dense, in such way that
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Fig. 6. Histogram: error distribution over 400000 validation samples.

the trajectories are well resolved. The total amount of model
coefficients that need to be stored is 8128.

The overall macromodel is evaluated and compared over a
dense set of 40 x 100 x 100 validation samples, and the distri-
bution of the absolute error is shown by a histogram in Fig. 6. It
is confirmed that an overall good approximation is obtained, as
the maximum error is bounded by —67.56 dB.

V. CONCLUSION

A new least-squares fitting approach is presented for the
macromodeling of parameterized frequency responses. It re-
duces the sensitivity to noise on the data, that is inherent to
interpolation-based approaches. The choice of the macromodel
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representation makes it easy to enforce stability of the poles
by construction. The accuracy and robustness of the proposed
method is illustrated by a parameterized lossless exponential
tapered transmission line example. Although the passivity of
the parametric macromodel is not enforced in this framework,
the topic will be investigated in forthcoming research.
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