
Causal and stable reduced-order model for
linear high-frequency systems

M. Condon, G. Grahovski and D. Deschrijver

With the ever-growing complexity of high-frequency systems in the
electronic industry, formation of reduced-order models of these
systems is paramount. In this reported work, two different techniques
are combined to generate a stable and causal representation of the
system. In particular, balanced truncation is combined with a Fourier
series expansion approach. The efficacy of the proposed combined
method is shown with an example.

Introduction: In many branches of engineering, there is an ongoing
need for efficient and effective model-order reduction techniques to
counter the ever-increasing complexity of simulations. From control
system design to RF integrated circuit design and optimisation, the for-
mation of reduced-order models has, for a long time, been a focus of
attention for research [1 and references therein]. One popular category
of reduction methods for linear systems are Krylov subspace methods,
e.g. [2]. These methods can handle large systems and are numerically
efficient. However, there is no error bound for them and they generate
non-optimal models. On the other hand, balanced truncation and
optimal Hankel model reduction [3] have global error bounds, but
their associated computational requirements for their traditional
implementations render them unsuitable for large-scale systems of
order 105 or higher. Some recent work in relation to balanced truncation
for large-scale sparse systems has been done by Gugercin and Li [4] and
for parallel model reduction of systems up to the size of O(104) by
Benner et al. [5].

In this Letter, we address the combination of two methods. The first is
based on a Fourier series expansion [6]. The full-size model is simulated
(or measurements can be taken from the system if a physical represen-
tation is present) and an intermediate model is formed using the
Fourier series expansion. Guaranteed stability and causality is assured
with this model. The second stage of the technique is the application
of standard balanced truncation [7] to reduce further the model and
extract a compact model with a global error bound. The proposed
method is applied to an example and the result highlights its efficiency
and efficacy.

Fourier series expansion: Fourier series expansion was first intro-
duced in [6] and is summarised here for completeness. Consider a
large-scale linear system. The goal is to determine a reduced-order
model that can be used in subsequent design or analytical work.
Let the system be described by a transfer function H(v) obtained
from simulation of the full system. Suppose H(v) is nonzero for
jvj [ [0, vm] where vm is assumed to be large, but finite. Also,
assume H(v) ¼ H�(2v). Then Re H(v) may be expanded in a
Fourier series as follows, bearing in mind that it must be an even
function of frequency:

Re HðvÞ ¼
P1
k¼0

ak cos k ~v ð1Þ

where ṽ ¼ pv/vm. The expression in (1) describes an even func-
tion, defined for v [ [2vm, vm] (i.e. ṽ [ [2p, p]). Assuming
causality or to enforce causality, the expression for Im H(v) may
be obtained from (1) via the Kramers-Kronig relations (Hilbert trans-
form) [8, 9]:

Im HðvÞ ¼ �
P1
k¼0

ak sin k ~v ð2Þ

From (1) and (2), it follows that

HðvÞ ¼
P1
k¼0

ake
�jk ~v ð3Þ

for v [ [2vm, vm].
The representation of the output in the time-domain may be obtained

by an inverse Fourier transform. The output caused by an (arbitrary)
input x(t) defined for t . 0 (i.e. input signal x(t)u(t) with Fourier
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image X(v) where u(t) is the unit step-function) is:

yðtÞ ¼
1

2p

ð1
�1

e jvtY ðvÞdv

¼
P1
k¼0

ak
1

2p

ð1
�1

e jðt� ~kÞvX ðvÞdv

¼
P1
k¼0

akxðt � ~kÞuðt � ~kÞ

ð4Þ

where k̃ ¼ pk/vm. Therefore, once the set of FSE coefficients fakg is
obtained from the frequency-domain simulations (i.e. from (1)), then
the response for an arbitrary input may be readily determined from (4).

To determine the set of FSE coefficients, let H(v) be obtained at a
number of points, vi:

Fð1Þ
i ¼ Re HðviÞ; i ¼ 1; 2; . . . ;N1 ð5Þ

Fð2Þ
i ¼ Im HðviÞ; i ¼ 1; 2; . . . ;N2 ð6Þ

where N1 is the number of real parts of the data points and N2 is the
number imaginary parts of the data points. Then let a be the set of
real coefficients a ¼ [a0 a1 . . . aN]

T. Let Mik
(1) ¼ cos kṽi, Mik

(2) ¼

2sin kṽi and ṽi ¼ pvi/vm where k ¼ 1, . . . , N. Then from (1) and (2):

F ð1Þ ¼ M ð1Þaþ Eð1Þ ð7Þ

F ð2Þ ¼ M ð2Þaþ Eð2Þ ð8Þ

E (1,2) represent the errors that arise owing to limiting the summation in
(1)–(4) to a finite number of terms, N. (7) and (8) may be merged to
yield:

F ¼ Maþ E ð9Þ

with

F ¼
Fð1Þ

Fð2Þ

� �
; M ¼

M ð1Þ

M ð2Þ

� �
; E ¼

Eð1Þ

Eð2Þ

� �

and the minimal error, E TE, for (9) is achieved with:

a ¼ ðMTMÞ
�1MTF ð10Þ

Formation of reduced-order state space: Once the vector of coefficients
a is found from (10), the next step is to convert this representation into an
intermediate discrete-time state-space model. The approach employed
follows from Gugercin and Willcox [10, 11]. However, in contrast to
this work, they form an intermediate state-space model from the original
state-space model using a Krylov technique for Fourier model reduction.
If the sampling time T of the intermediate discrete-time model is set as
T ¼ ṽ ¼ p/vm, then:

HintðzÞ ¼ CrðzI � ArÞ
�1Br þ Dr ð11Þ

where:

Ar ¼ ½e2; e3; . . . ; eN ; 0�;

Br ¼ ½e1�;Cr ¼ ½a1; a2; . . . ; aN �; Dr ¼ ½a0�

ei denotes the ith unit vector of RN and 0 is a vector of zeros, and ai are
the coefficients determined in (10). z ¼ e jvT. Hint is the transfer function
of the intermediate reduced system. Because the state-space model
in (11) is derived from a Fourier series representation of the linear
system, it is guaranteed to be stable. However, the Fourier series repre-
sentation may contain redundant information so this is why at this point,
balanced truncation may be applied to the representation in (11).
Because of the form of (11), the Hankel matrix is known explicitly:

G ¼

a1 a2 . . . . . . aN
a2 a3 . . . aN 0

..

. ..
.

..

. ..
.

aN 0 . . . . . . 0

2
6666664

3
7777775

ð12Þ

The first k singular vectors of G, corresponding to the k largest singular
values si of G, are used to determine a projection matrix Vk. The
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discrete-time reduced system is then formed as:

x̂ðt þ 1Þ ¼ Âx̂ðtÞ þ B̂uðtÞ

ŷðtÞ ¼ Ĉx̂ðtÞ þ D̂uðtÞ
ð13Þ

where

Â ¼ VT
k ArVkB̂ ¼ VT

k BrĈ ¼ CrVkD̂ ¼ Dr

The superscript T denotes the transpose of a matrix. A continuous time
reduced-order model can be formed using the inverse bilinear transform.

Note that use of balanced truncation yields the following expression
for the error bound

kHint � Ĥk1 � 2
PN

i¼kþ1
si ð14Þ

Ĥ is the transfer function of the final reduced model.

Example: The example taken is the sample interconnect network in
Fig. 1 of [6]. The size of the reduced model is determined by selecting
singular vectors to form the projection matrix Vk for which the corre-
sponding singular values sk are such that sk/smax . 0.04. Fig. 1 com-
pares the transient output from a full model and that from the reduced-
order model of size k ¼ 10 obtained with the method detailed above. As
is evident, the result from the reduced model captures all of the essential
behaviour.
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Fig. 1 Transient results (black line ¼ ‘measured’ output) (dashed line ¼
output from reduced model)

Conclusions: We propose a two-stage method for forming a reduced-
order model of large-scale systems. The method combines two tech-
niques, a Fourier series approach and balanced truncation. The
method achieves a high degree of accuracy and eliminates any redundant
information from the reduced model and thus improves computational
efficiency.
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