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Abstract— The Vector Fitting algorithm [1] is an iterative
procedure to compute rational approximations of frequency-
domain responses. It was shown that the robustness of this
technique can be enhanced by using a set of orthonormal
rational basis functions, leading to the Orthonormal Vector
Fitting method [2]. In this paper, a time-domain implemen-
tation of this method is proposed for the macromodeling of
transient port responses. It is shown that this method is more
robust towards the initial pole specification, when compared
to the classical time-domain Vector Fitting method [3].
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I. INTRODUCTION

Compact and accurate macromodels are crucial for
accurate system-level simulations. The derivation of such
models from measurements or first-principle simulators
is numerically not a trivial task, even for linear systems.
In the frequency-domain, the Vector Fitting (VF) method
[1] was proposed to calculate broadband transfer functions
from a given frequency-domain response. It was shown
in [3] that this method can be extended to model transient
port responses in the time-domain.

Initially, both methods start from a prescribed set of
poles which define the basis functions of the approxi-
mation problem. Using an iterative least-squares method,
these poles are relocated in a two-step procedure to
minimize the global fitting error.

It was shown in [2] that the numerical robustness of the
technique can be improved by applying a Gram-Schmidt
orthonormalization procedure on the basis functions, lead-
ing to the Orthonormal Vector Fitting (OVF) method. In
this paper, an analogous reasoning is applied to build
macromodels in the time-domain. This way, the condi-
tioning of the system equations becomes less sensitive to
the initial pole specification, and accurate models can be
computed in fewer iterations. This improves the efficiency
of the method and reduces the overall computation time.

II. MODEL REPRESENTATION

Frequency-domain macromodelling tools are used to
build a rational transfer function R(s), based on the

spectral response (s,H(s)) of a physical structure.

R(s) =
N(s)
D(s)

=

P∑
p=1

cpΦp(s, a)

c̃0 +
P∑

p=1

c̃pΦp(s, a)

(1)

In the frequency-domain OVF technique, numerator and
denominator are expanded as a linear combination of
orthonormal rational functions Φp(s, a), which are based
on a prescribed set of stable poles a = {−a1, ...,−aP }
[2]. If −ap is a real pole, then the basis functions are
defined as

Φp(s, a) =

√
2�e(ap)
s + ap


p−1∏

j=1

s − a∗
j

s + aj


 (2)

and a linear combination is formed when two poles
−ap = −a∗

p+1 form a complex conjugate pair

Φp(s, a) =

√
2�e(ap)(s − |ap|)

(s + ap)(s + ap+1)


p−1∏

j=1

s − a∗
j

s + aj


 (3)

Φp+1(s, a) =

√
2�e(ap)(s + |ap|)

(s + ap)(s + ap+1)


p−1∏

j=1

s − a∗
j

s + aj


 (4)

It can be shown that these basis functions are orthonormal
with respect to the following inner product (1 ≤ m,n ≤
P )

〈Φm(s),Φn(s)〉s =
1

2πi

∫

iR

Φm(s)Φ∗
n(s)ds (5)

III. TRANSFER FUNCTION IDENTIFICATION

The goal of the identification process, is to identify
the coefficients cp and c̃p in (1), such that the difference
between R(s) and H(s) is minimized in a least-squares
sense. A linear approximation of this non-linear identifi-
cation problem is obtained by solving the following set
of equations (c̃0 = 1)

P∑
p=1

cpΦp(s, a) − H(s)
P∑

p=1

c̃pΦp(s, a) ≈ H(s). (6)

In successive iterations, a Sanathanan-Koerner iteration
[5], [6] can be applied which iteratively relocates the
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transfer function poles, until a good approximation is
obtained [7]. It is found that an accurate fitting model
usually results in a few iterations, provided that the initial
set of starting poles is well-chosen.

To obtain the time-domain algorithm, equation (6) can
be rewritten in terms of an input signal u(t) and the
corresponding output signal y(t). To this end, the result
is transformed to the time-domain by multiplying equa-
tion (6) by U(s), which represents the Laplace transform
of u(t).

If φp(t, a) denotes the Inverse Laplace Transform of
Φp(s, a), and f(t) �g (t) the convolution of f(t) and g(t),
then it follows that

P∑
p=1

cp (u (t) �φp(t, a)) −
P∑

p=1

c̃p (y (t) �φp(t, a)) ≈ y(t)

(7)
Since orthogonality in the frequency domain corresponds
to orthogonality in the time-domain, it is clear that the
relevant time-domain basis functions φp(t) are given by
the inverse Laplace transform of Φp(s), and that they
are orthonormal with respect to the time-domain inner
product (1 ≤ m,n ≤ P )

〈φm (t), φn (t)〉t =
∫ ∞

0

φm(t)φn(t)dt (8)

The fact that no explicit expression is available for these
basis functions is of no importance, because equation (7)
only needs the convolution of these functions with the
input and output signals u(t) and y(t). To compute the
filtered signals u (t) � φp (t) or y (t) � φp(t), the state
space realization of the orthonormal basis functions Φp

can be simulated with input u(t) or y(t), respectively.
More details about the construction of this realization are
described in [4].

A direct application of equation (7) to the time-domain
samples (tk, u(tk), y(tk)) leads to a system of equations
which are linear in terms of the coefficients cp and c̃p.
Based on the values of the coefficients c̃p, the poles
of the transfer function can be calculated by solving an
eigenvalue problem [4]. The iterative replacement of the
prescribed poles by the relocated poles is repeated until
convergence is detected.

In the final iteration, the converged poles θ =
{−θ1, ...,−θP } can be used to identify the coefficients γp

of the convoluted exponential terms as a linear problem

P∑
p=1

γp

(
u (t) � e−θpt

)
= y(t) (9)

IV. NUMERICAL EXAMPLE

A passive system is excited with a Gaussian pulse,
which is centered at t = 0.6 ns, with a width of 0.2 ns and
a height of 1 in normalized units. The transient response
y(t) is approximated by a 104-pole transfer function using
the VF and OVF algorithm.
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Fig. 1. VF approximation of transient response (1 iteration, υ = 0.1)
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Fig. 2. OVF approximation of transient response (1 iteration, υ = 0.1)

The initial set of 104 starting poles is typically chosen
according to the heuristical scheme proposed in [1]

−ap = −α + βi,−ap+1 = −α − βi

α = υβ (10)

provided that the imaginary parts β are linearly distributed
over the frequency range [0 − 3 GHz], and υ = 0.01.
Chosing small values for υ often results in a well-
conditioned system of equations, which can be solved
accurately by both techniques. However, it is shown in [1]
that the VF approach suffers numerical ill-conditioning if
larger values for υ are selected.

To illustrate the improvement of the OVF technique,
the value of υ is increased to 0.1, and both algorithms
are applied to model the time-domain data in a single
iteration. As can be seen from Figures 1 and 2, the VF
model only captures the initial transient response, while
the OVF model has a higher overall accuracy.

Table 1 illustrates the evolution of the maximal absolute
fitting error if multiple iterations are performed. As can
be seen, the VF method converges to comparable results
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TABLE I

MAXIMAL ABSOLUTE TIME-DOMAIN ERROR (υ = 0.1)

Max. Abs. Error VF OVF
Iteration 1 0.0307 0.0024
Iteration 2 0.0031 0.0021
Iteration 3 0.0019 0.0025
Iteration 4 0.0021 0.0011
Iteration 5 0.0011 0.0004
Iteration 6 0.0005 0.0004
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Fig. 3. Frequency-domain simulation of OVF model

if sufficient iterations are performed. However, it should
be noted that additional iterations lead to an undesired
increase in computation time. Therefore, the OVF method
is preferable due to its robustness and efficiency.
As a means of validation, the OVF model in the final

iteration is simulated in the frequency-domain over the
frequency range of interest, and compared to the reference
response. As can be seen from Figure 3, an overall good
approximation is obtained.

V. CONCLUSIONS

In this paper, the use of Orthonormal Vector Fitting for
time-domain identification of transient port responses is
proposed. It is shown that the method is less sensitive to
the initial pole specification, as compared to the classical
time-domain Vector Fitting technique [3]. Since less iter-
ations are needed to obtain accurate results, the overall
computation time can be reduced.
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